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▪ DALL·E 2 is an AI system that can create realistic images and art from a description in 

natural language.

▪ OpenAI released DALL·E 2 on April 6, 2022.

▪ The parameter of DALL·E 2 is 3.5 billion, which is 1/4 of the previous version.

DALL·E 2: OpenAI’s Image Generation AI System

7

< Salvador Dalí image generated by DALL·E 2>

Vibrant portrait 

painting of Salvador

Dalí with a robotic

half face.

Text Prompt
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GPU

Input Tokens(𝐼) & Weight (𝑊𝑄, 𝑊𝐾, 𝑊𝑄 )

𝑄(= 𝐼 ×𝑊𝑄), 𝐾(= 𝐼 ×𝑊𝐾), 𝑉(= 𝐼 ×𝑊𝑉)

𝑄, 𝐾

Logit 𝐿 (= 𝑄 × 𝐾𝑇)

Logit 𝐿

𝐴 (= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐿)) 

𝐴, 𝑉

MHA Output O (= 𝐴 × 𝑉) 

HBM

< Structure of MHA and FFN in Transformer and Conceptual Data Movement between GPU and HBM >

Massive Data Movement between GPU and HBM during 
Transformer-based AI Computing

▪ Transformer model consists of an encoder and decoder, which are composed of two main 

components: multi-head attention (MHA) and feed forward network (FFN).

▪ During these processes, significant data movement occurs between GPU and HBM.

Ref) Ivanov, Andrei, et al. "Data movement is all you need: A case study on optimizing transformers." Proceedings of Machine Learning and Systems 3 (2021),

Kao, Sheng-Chun, et al. "Flat: An optimized dataflow for mitigating attention bottlenecks." Proceedings of the 28th ACM 2023

Query

(𝑄)

Key

(𝐾)

Value

(𝑉)

Logit

(𝐿)

Attend

(A)

Out-Proj

(O)
S

Softmax

Input

OutputFFN

Multi-head 

Attention (MHA)
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Von Neumann Architecture 
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Performance Evaluation of GEMM Workloads with GPU-HBM Roofline Model

10
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▪ Assuming the GPU-HBM architecture meets the system’s peak computation capabilities, 

the roofline model of GPU-HBM and GEMM workloads was plotted based on V100.

✓ GEMM ①, ④ : Arithmetic Intensity > 117.19 FLOPS/B → Compute-bound

✓ GEMM ②, ③, ⑤ : Arithmetic Intensity < 117.19 FLOPS/B → Memory-bound 

< Roofline Model of Simulated GEMM Workloads >

Arithmetic Intensity = 
𝑀 ∙ 𝑁 ∙ 𝐾

𝑀 ∙ 𝐾 + 𝑁 ∙ 𝐾 +𝑀 ∙ 𝑁

GEMM

Arithmetic 

Intensity 

[FLOPS/Byte]

Achieved

Performance

[TFLOPS/s]

① 740.68 120

② 0.99 0.89

③ 3.99 3.59

④ 340.43 120

⑤ 33.75 30.38

Com-BW Ratio = 
𝑃𝑒𝑎𝑘 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

0.99

100

30.38

3.59

Com-BW Ratio : 117.19 FLOPS/B (GPU-HBM)
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Scaling 법칙은 계속된다

11

Year

Size
Model Size

# of parameters

# of agents

# of Batches

# of GPUs

# of HBMs

HBM Bandwidth

HBM stacks

# of interconnections

Memory capacity

Power consumptions

Cost
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HBM Interposer Design: Cross-sectional View

< Cross-sectional View of Silicon Interposer based HBM Module >

μBump

Silicon Interposer

Processor

HBM ControllerDRAM

DRAM

DRAM

DRAM

Logic Die PHY

DRAM

DRAM

DRAM

DRAM

Logic DiePHY

TSV

PHY

HBM Controller

PHY

On-interposer 

decoupling capacitor Embedded capacitor

HBM HBM

TSV

high k
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Cross-section of NVIDIA A100

13

< Cross-section of NVIDIA A100 > 

HBM2E

GPU

Interposer

u-bump

C4 bump

PCB

▪ HBM2E와 GPU를 연결하기 위해서 Interposer를 사용하는 CoWoS 기술이 적용되었음.

Ref) NVIDIA
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주상복합 건물
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Multi-level 
On-chip Interconnect

Si-Substrate

SiO2

Under fill

Under fill

Dielectric

Dielectric

1st Chip

2nd Chip
(Thinned

Substrate)

3rd Chip
(Thinned

Substrate)

• Short Interconnection

→ Reduced RC Delays

→ Low Impedance for Power Distribution Network

→ Low Power Consumption

→ Heat Dissipation Through Via

• No Space Limitation for Interconnection

→ High Density Chip Wiring

→ No Limitation of I/O Number

→ No Limitation of I/O Pitch

→ Small Area Package

Key Technology : TSV (Through Silicon Via)

3D TSV Stacked IC
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TSV Elevator 
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DRAM Bandwidth Teardown in HBM3 

17

▪ From bank group I/O to interface I/O, the number of I/O and data rate are hierarchical.

▪ I/O bus window is extended by time-division multiplexing.

1 2

3

4Logic die

Interposer

DRAM die

Data path Configuration Bandwidth

Bank group

(on-chip)

16384 I/O x 0.4375 Gbps 

(4nCK)
896 GB/s

Global

(on-chip)

8192 I/O x 0.875 Gbps 

(2nCK)
896 GB/s

Die-to-die

(TSV)

4096 I/O x 1.75 Gbps 

(1nCK)
896 GB/s

Logic die

(on-chip)

4096 I/O x 1.75 Gbps 

(1nCK)
896 GB/s

Interface

(interposer)

1024 I/O x 7 Gbps 

(0.25 nCK)
896 GB/s

< Data path in HBM3 > < DRAM bandwidth of each data path in HBM3 >
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인천 공항
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시간의 불확실성: ultimate bandwidth limit

Deterministic Jitter

Random jitter

ISI jitter 

PDN jitter

PSIJ



TERA
TeraByte Interconnection and Package Laboratory

TeraByte Interconnection and Package Laboratory

Interconnection Future(10): Design Innovations: 5 Is

System on Chip

(On-Chip Level)

System in Package

(On-Package Level)

PCB, Cable, Module

(System Level)

Co-Simul. Co-Design

Design and Analysis for High-performance System

Improvement of System Integrity, Performance, Reliability, Cost, …

Signal Integrity

(SI)

Power 

Integrity

(PI)

Electromagnetic   

Interference

(EMI)

Thermal 

Integrity

(TI)
for High-

Performance 

System

5I

Artificial

Intelligence

(AI)
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Thermal Coupling on Operating HBM System

▪ GPU’s heat thermal coupling to HBM through molding compound, heat sink, interposer 

and etc.

▪ GPU’s heat is dominantly affected to HBM’s thermal gradient.

▪ Only molding compound part can be customized for reducing thermal coupling effects.

21

<Thermal distributions of operating HBM system>
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Next-Generation HBM Roadmap 
: Comparison of Thermal Management & Cooling Methods for HBM

22

Ref) Kraus & Bar-Cohen (1983) 

Surface heat flux [W/cm2]
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HBM1

HBM2

HBM3, 4

HBM5, 6

HBM7, 8

< Thermal Management & Cooling Methods for Next-Generation HBM >
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Next-Generation HBM Roadmap 
: Thermal Management & Cooling Method

23

Fin & Fan Air Cooling

Immersion Cooling

(Present)

Conventional

HBM Cooling 

Method

Embedded Cooling

Next-Generation

HBM Cooling 

Method

Direct-to-Chip (D2C) Liquid Cooling

Cooling Fan

Heatsink
Heatsink

Inlet Outlet

Fluidic TSV

Inlet OutletThermal 

Transmission LineImmersion Tank

Inlet Outlet
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Part2: Overview of HBM Roadmap
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HBM 의 발전 방향(1) 

▪ Higher Bandwidth 

✓ Larger Number of Interconnects

✓ Higher Gbps/line

✓ Larger Number of TSV

✓ Hybrid bonding, Narrow pitch, 

▪ Higher Memory Capacity

✓ Integration with LPDDR-HBM, HBF

✓ Hierarchical Memory Architecture

✓ Integrated Memory network, CXL

▪ Computing in HBM

✓ Near Memory Computing

✓ Steaming Multi-processor

✓ Data Compression

✓ Error Corrections

25
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HBM 의 발전 방향(2) 

▪ 3D Integration

✓ Stacked Cash

✓ Active/Embedded Interposer

✓ Hybrid interposer (Si/Glass)

▪ Innovative cooling architecture  

✓ Liquid cooling 

✓ Immersion Cooling

✓ Embedded cooling

▪ HBM Centric Computing 

✓ Full 3D Integration

✓ CPU, GPU, HBM, HBF integration

✓ Instruction set, programming

26
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Technical Trend of AI-Specialized HBM in AI Semiconductor Industry
: Increasing Bandwidth, Data Rate, Capacity 

1
1.2

2

Data Rate [Gb/s]
Bandwidth [GB/s]
Capacity [GB]

Next-GenerationPresent Generation

3.2

4.5

8

4

10

8

5

6
✓ Higher Data Rate

✓ Higher Bandwidth

✓ Larger Capacity

HBM

(2015)

HBM2

(2018)

HBM2E

(2020)

HBM3

(2022)

HBM3E

(2024)

HBM4

(2026)

HBM4E

(*2028)

Data Rate 2 Gbps 2.4 Gbps 3.6 Gbps 6.4 Gbps 8 Gbps 8 Gbps 10 Gbps

# of I/O 1,024 2,048

Bandwidth 256 GB/s 307 GB/s 461 GB/s 819 GB/s 1.0 TB/s 2.0 TB/s 2.5 TB/s

Capacity/die 8 Gb 16 Gb 24 Gb 32 Gb

# of stack die 4/8-Hi 8/12-Hi 12/16-Hi

Capacity/HBM 4/8 GB 8/16 GB 16/24 GB 24/36 GB 36/48 GB 48/64 GB

Power/HBM 4 W 10 W 19 W 25 W 32 W 43 / 75 W 48 / 80 W

Cooling Method
Thermo-Electric Cooling (TEC) 

w/ Heatsink
Direct-to-Chip (D2C) Liquid Cooling

1,024 I/O 2,048 I/O
4/8 Hi 12/16 Hi

Ref) Samsung, SK Hynix
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Technical Trend of AI-Specialized HBM in AI Semiconductor Industry
: Next Generation HBM Technology Trend by KAIST TERALAB

Ref) Samsung, SK Hynix

HBM1

(2015)

HBM2

(2018)

HBM2E

(2020)

HBM3

(2022)

HBM3E

(2024)

HBM4

(2026)

HBM5

(2029)

HBM6

(2032)

HBM7

(2035)

Next-GenerationPast & Present

Previous Slide

Data Rate [Gb/s]

Bandwidth [GB/s]

Capacity [GB]

4
4

8

16

32

64

6

8

12

15

5

8 8

✓ Higher Data Rate

✓ Higher Bandwidth

✓ Larger Capacity



TERA
TeraByte Interconnection and Package Laboratory

TeraByte Interconnection and Package Laboratory 29

Next-Generation HBM Roadmap by KAIST TERALAB 

HBM4 (2026) HBM5 (2029) HBM6 (2032) HBM7 (2035) HBM8 (2038)

Data Rate 8 Gbps 8 Gbps 16 Gbps 24 Gbps 32 Gbps

# of I/O 2,048 4,096 4,096 8,192 16,384

Bandwidth 2.0 TB/s 4 TB/s 8 TB/s 24 TB/s 64 TB/s

Capacity/die 24 Gb 40 Gb 48 Gb 64 Gb 80 Gb

# of die stack 12/16-Hi 16-Hi 16/20-Hi 20/24-Hi 20/24-Hi

Capacity

/HBM
36/48 GB 80 GB 96/120 GB 160/192 GB 200/240 GB

Power/HBM 75 W 100 W 120 W 160 W 180 W

Die stacking Microbump (MR-MUF) Bump-less Cu-Cu Direct bonding

Cooling

Method

Direct-to-Chip (D2C)

Liquid Cooling
Immersion Cooling Embedded Cooling

HBM

Architecture

Custom HBM Base Die

HBM-LPDDR

3D NMC-HBM & 

stacked cache / decap

Multi-tower HBM

Active / Hybrid Interposer

Hybrid HBM Architecture

HBM-HBF

HBM-3D LPDDR

Full-3D / HBM Centric 

Computing Architecture

Additional

Features

(Patent)

NMC processor

+ LPDDR Ctrl

+ Cache + CXL

+ on-die/stacked decap

+ HBM shielding

+ Network switch

+ Bridge die

+ Asymmetric TSV

+ HBF/LPDDR Ctrl 

+ Storage network

+ HBM Centric Interposer

+ Double side Cooling

+ Edge-expand Stack

AI Design 

Agent

ubump & TSV-array 

Decap placement 

Optimization

I/O Interface Optimization

considering PSIJ 

Hybrid Equalizer +

Generative AI based

SI/PI Metric Estimation

LLM based Human Interactive 

AI Design Agent

Ver 1.2 / updated.250521

HBM Spec. Packaging/Cooling

Architecture AI Design Agent
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Next-Generation GPU-HBM Roadmap
: More GPU & HBM Integrated Above Interposer 

GPU Architecture
Rubin

(2026)

Feynman

(2029)

Post Feynman

(2032)

Next-Gen Architecture

(2035)

GPU Die Size 728 mm2 750 mm2 700 mm2 600 mm2

GPU Power 800 W 900 W 1,000 W 1,200 W

GPU-HBM Module R200 F400
Post Feynman 

GPU-HBM Module

Next-Gen 

GPU-HBM Module

Interposer Size

# of GPU Dies 2 4 4 8

# of HBM Stack HBM48 HBM58 HBM616 HBM732

Interposer Die Size
2,194 mm2

(46.2 mm x 48.5 mm)

4,788 mm2

(85.2 mm x 56.2 mm)

6,014 mm2

(102.8 mm x 58.5 mm)

9,245 mm2

(96.4 mm x 95.9 mm)

Total Bandwidth 16 / 32 TB/s 48 TB/s 128/256 TB/s 1,024 TB/s

Total HBM Capacity 288/384 GB 400/500 GB 1,536/1,920 GB 5,120/6,144 GB

Total Power 2,200 W 4,400 W 5,920 W 15,360 W

GPU

HBM

Interposer
46.2 mm

85.2 mm 102.8 mm

96.4 mm

9
5
.9

 m
m

5
6
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m

5
8
.5
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HBM3 (2022) HBM4 (2024) Next-Generation HBM

I/O # 1,024 2,048 4,096 ~ 8,192

HBM PHY

Ball map

microbump

pitch
55 um 45 um 40 um 

Interposer

Channel

Cross

Section

Metal w/s 2um ~ 3um 2um < 2um

# RDL Microstrip + Stripline (x2) GSG Interleaved (x4) GSG Interleaved (x6 ~ x8)

Next-Generation HBM Roadmap 
: Increased I/O Channels for Bandwidth Extension

31

G S G S G S G

S G S G S G S

S

G

G S G S G S G

S G S G S G S

S

G

PHY Area Extension

< Increased I/O & Interposer Channel of Next-Gen HBM >

S S S S S S S S

S S S S S S S S

Ground

Ground

Ground

Power

G S G S G S G

S G S G S G S

S

G

G S G S G S G

S G S G S G S

S

G

G S G S G S G

S G S G S G S

S

G

S

G

S

G

S

G

G

S

G

S

G
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HBM PHY Extended HBM PHY Extended HBM Base Die & PHY
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Next-Generation HBM Roadmap 
: 3D Integration with Advanced Packaging Technology

90 µm 45 µm 36 µm
✓ DRAM Die 

Thickness

✓ Die-to-Die 

Bonding

TC-NCF

(Microbump)

Cu-Cu 

Bonding

MR-MUF

(Microbump)

4-Hi 8-Hi 12-Hi 16-Hi 20-Hi

720 µm

✓ TSV/Bump 

pitch
35 µm 25 µm 10~15 µm

HBM1 (2015) HBM2 (2018) HBM3 (2022) HBM4 (2026) HBM5 (2028)
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HBM4의 구조

33

GPU

실리콘인터포저 (기판)

Customized

HBM Base Die 

TSV(실리콘관통전극)

HBM4

1

2

3

HBM 적층수, 저장용량증가
8 ~ 12 단 → 12 ~ 16 단

16 ~ 24 GB → 36 ~ 48 GB

1

고객맞춤형 (Customized)

Base Die 설계
일부 GPU 계산기능이이동

2

HBM3/3E 대비 2배늘어난
HBM-GPU 연결선 (I/O)

2,048 개

3

HBM4

Architecture
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Custom HBM Base Die Design : LPDDR Memory Channel 
for High Capacity & Memory Bandwidth

34

▪ The custom base die of HBM4 enables direct access to HBM and LPDDR, providing improved memory 

capacity without the CPU.

< Conventional CPU-GPU Architecture with HBM3 > < HBM4 Architecture with LPDDR >

GPU
HBM Base Die

HBM Base Die

LPDDRLPDDR

LPDDRLPDDR

HBM

LPDDR

LPDDR

HBM

LPDDR

LPDDR

HBM Base Die

HBM Base Die

CPU

(Unused)

MC

MC
Memory controller 

@ HBM Base Die

GPU

HBM

HBM

LPDDR

CPU

LPDDR

PCIe

Memory Channel

MC

Bandwidth limit

: Low-Bandwidth : High-Bandwidth

HBM4

Architecture
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Custom Base Die w/ 3D Near-Memory-Computing (NMC)

35

< 3D Integrated NMC-HBM Architecture above HBM DRAM >

▪ By integrating a NMC processor die and cache die above HBM, the proposed 3D NMC-

HBM achieves high performance and energy efficient computing through dedicated TSV 

interconnection and power supply network.

GPU
SMSMSMSMSM SM

Silicon Interposer

Base Die for NMC

3D Heterogeneous 

Integration above HBM

SM SM SM SM SM

L2 Cache

Custom HBM Base Die

Interposer Channel

HBM DRAM Stack HBM DRAM Stack

NMC L2 Cache Die

NMC Processor Die

NMC Base Die

3D Heterogeneous 

Integration above HBM

Custom HBM Base Die

HBM5

Architecture
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Electromagnetic Shielding Structure with Liquid Cooling System 
for HBM5

36

< Electromagnetic Shielding Structure with Liquid Cooling System for HBM5 Architecture >

NMC Structure

GPU

PHYPHY SM

NMC Base Die

SM SM
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Proposal of Twin Tower High Bandwidth Memory with Near-Memory-

Computing (Twin-HBM-NMC) Architecture

< Overview of Twin Tower HBM with NMC Architecture >

▪ In twin tower high bandwidth memory with near-memory-computing (Twin-HBM-NMC) 

architecture, two DRAM stacks are located on top of the large logic die.

▪ The logic die include NMC units and is connected to the GPU via 2048 interposer channels.

2048 I/O Channels
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Next-Generation HBM Roadmap 
: Hybrid (Silicon + Glass) Interposer for Ultra Large-Scale HBM Package

< Silicon-Glass Hybrid Interposer for Ultra Large-Scale Next Generation HBM >

Large Scale Hybrid (Silicon+Glass) interposer Limitation in increasing 

silicon interposer die size
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Silicon Interposer Silicon Interposer
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Multi HBM-HBM Skybridge Interposer for Efficient 
Near Memory Computing Performance
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< Side view of Skybridge Interposer Architecture > < Top view of Skybridge Interposer >
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Architecture of High Bandwidth Flash (HBF)

< High Bandwidth Flash (HBF) Architecture for Memory Intensive LLM Inference >
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HBM-HBF-Storage Network Architecture
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HBM7 Architecture Integrated with High-Capacity 3D-Stacked 
LPDDR on Glass Interposer

< HBM7 Architecture Integrated with High-Capacity 3D-Stacked LPDDR on Glass Interposer >
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Multi Functional Bridge-Die with Stable Signal & Power 

Performance for Multi 24-Hi HBM8
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< Side and top view of proposed multi functional bridge-die >
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Embedded Cooling Structure for HBM
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< Concept of the proposed embedded cooling structure for GPU-HBM module >

▪ The proposed Thermal Transmission Line (TTL) and Fluidic TSV (F-TSV) can cool the HBM module 

efficiently by circulating cooling fluid through the GPU to the interposer and HBM.

▪ The proposed TTL transfers the internal heat within HBM die to the fluid flowing in F-TSV

Logic die
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DRAM
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Heat transfer
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3D Memory Expansion Architecture with Embedded Cooling Structure 
for HBM8 with Double-Sided Interposer [1/3]: GPU-HBM-HBM

45

< 3D Memory Expansion Architecture with Embedded Cooling for HBM8 with Double-Sided Interposer using HBM >
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HBM-Centric Interposer with Upper Layer GPU and Vertical 
Interconnect Embedded Die
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▪ GPU is implemented at top layer of memory stack for heat dissipation. (Thermal Issue ↓)

▪ Additional silicon interconnect pillar die is embedded between HBMs to support power to GPU.
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PHY

Controller

Base Die

HBM

PHY

Controller

Base Die

HBM

PHY

Controller

Base Die

HBM

HBM8

Architecture



TERA
TeraByte Interconnection and Package Laboratory

TeraByte Interconnection and Package Laboratory

Next-Generation HBM Roadmap by KAIST TERALAB : HBM Architecture
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HBM Centric Computing (HCC)

Advanced Packaging Technology

2.5D GPU-HBM Architecture

Silicon Interposer

< Next-Generation HBM Architecture Roadmap >
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Key Features of HBM4
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1. Electrical Specification

➢ Data Rate : ~ 8 Gbps

➢ Number of I/Os : 2,048 (4096)

➢ Total Bandwidth : 2.0 TB/s

➢ Number of die stack : 12/16-Hi

➢ Capacity/die : 24 Gb

2. Packaging/Cooling Method

➢ Microbump (MR-MUF)

➢ Direct-to-Chip (D2C) Liquid Cooling

3. HBM Architecture

➢ Custom HBM Base Die

➢ NMC processor + LPDDR in Base Die

4. AI Design Agent

➢ AI assistant

➢ Microbump & TSV array, and Decap placement Optimization based on 

Reinforcement Learning
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HBM4의 구조
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Custom HBM Base Die Design : LPDDR Memory Channel 
for High Capacity & Memory Bandwidth
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▪ The custom base die of HBM4 enables direct access to HBM and LPDDR, providing improved memory 

capacity without the CPU.

< Conventional CPU-GPU Architecture with HBM3 > < HBM4 Architecture with LPDDR >

GPU
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[HBM4] HBM-LPDDR Architecture Data Read/Write Path

▪ Case 1: GPU ↔ HBM (Read/Write)

▪ Case 2: HBM ↔ LPDDR (Read/Write)

▪ Case 3: GPU ↔ LPDDR (Read/Write)

▪ Case 4: GPU → HBM (Write) & HBM ← LPDDR (Read)

▪ Case 5: GPU → HBM (Write) & HBM → LPDDR (Write) 

▪ Case 6: GPU ← HBM (Read) & HBM ← LPDDR (Read)

▪ Case 7: GPU ← HBM (Read) & HBM → LPDDR (Write) 
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< Side-view of HBM-LPDDR Structure and its data path >
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Data & Command Flow in HCC [1]:
Conventional Data Flow in AI Computer Architecture

▪ ①, ② Data (Input 𝑥, Input ℎ, Weight 𝑤𝑖𝑗) from DIMM → copy to → HBM 

→ Path: DIMM → CPU → GPU → HBM

▪ ③, ④ Data (Input 𝑥, Input ℎ, Weight 𝑤𝑖𝑗) from HBM to cache in GPU 

→ Path: HBM → GPU

▪ ⑤ Matrix calculation in GPU

▪ ⑥ Save matrix multiplication results to SRAM

▪ ⑦ Copy ⑥ → to HBM / Path: GPU → HBM

▪ ⑧ Copy ⑦ → to DIMM / Path: HBM → GPU → CPU → DIMM

①, ②

SRAM

Matrix cal.

⑤ ⑥

①, ②

③, ④

⑦

⑧

HBMGPU
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PCIex

or

NVLink (CTC)

DRAM channel

HBM channel

DIMM / Data storage 
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HBM4

Architecture
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Data & Command Flow in HCC [2]:
New Data Flow in HCC with GPU Co-Existence

▪ ① Data (Input 𝑥, Input ℎ, Weight 𝑤𝑖𝑗) from DIMM → copy to → HBM / Path: DIMM → HBM 

▪ ② Data (Input 𝑥, Input ℎ, Weight 𝑤𝑖𝑗) from HBM to cache in GPU / Path: HBM → GPU

▪ ③ Matrix calculation in GPU

▪ ④ Save matrix multiplication results to SRAM

▪ ⑤ Save it to HBM / Path: GPU → HBM

▪ ⑥ Copy it to DIMM / Path: HBM → DIMM

→ Since the CPU is not involved in the memory transfer path, delays can be reduced, 

and it has the advantage of fewer interconnection steps and shorter lengths.
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GPU
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Key Features of HBM5

56

1. Electrical Specification

➢ Data Rate : 8 Gbps

➢ Number of I/Os : 4,096

➢ Total Bandwidth : 4.0 TB/s

➢ Number of die stack : 16-Hi

➢ Capacity/die : 40 Gb

2. Packaging/Cooling Method

➢ Microbump (MR-MUF)

➢ Immersion Cooling, Thermal Via (TTV), Thermal Bonding 

➢ Temperature sensors in base die

3. HBM Architecture

➢ Dedicated decoupling capacitor chip die stack 

➢ Custom HBM Base Die w/ 3D NMC-HBM & Stacked Cache

➢ NMC + Cache in HBM PKG

➢ LPDDR + CXL in Base Die

➢ Seperated TSV, TGV, TPV, TTV deigns

4. AI Design Agent

➢ AI Agent

➢ I/O Interface Optimization considering PSIJ based on Reinforcement Learning
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Custom Base Die w/ 3D Near-Memory-Computing (NMC)

57

< 3D Integrated NMC-HBM Architecture above HBM DRAM >

▪ By integrating a NMC processor die and cache die above HBM, the proposed 3D NMC-

HBM achieves high performance and energy efficient computing through dedicated TSV 

interconnection and power supply network.
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3D NMC-HBM

HBM

Decap Die

Designated Decoupling Capacitor Die for 3D Stacked HBM5
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HBM5

Architecture

< Designated Decoupling Capacitor Die in 3D Stacked NMC-HBM5 Architecture >
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Custom Base Die w/ Extended Scale Cache (ESC) 
Stacked-GPU HBM Architecture
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< Extended Scale Cache (ESC) Stacked-GPU HBM Architecture >

▪ The proposed architecture utilizes an extended L2 cache, which is the last-level cache of 

the GPU, stacked above the GPU integrated using through silicon vias (TSVs).
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Custom HBM Base Die design : CXL Memory Channel for 
Shared Data Storage & Memory Expansion

60

▪ The custom base die of HBM5 enables direct access to shared memory pool through CXL, 

providing a single unified memory with improved bandwidth and capacity.

< HBM5 Architecture with CXL >
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Next-Generation HBM Roadmap 
: Distributed Power + Thermal HBM TSV Array Placement

HBM3

Center Array

P/G + Thermal TSV

HBM4

Center Array + Ring

P/G + Thermal TSV

HBM5 ~ HBM8

Distributed Grid Array

P/G + Thermal TSV

HBM5

Architecture
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Through Thermal Via (TTV) for Increasing Heat Dissipation in HBM5 
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< Through Thermal Via (TTV) for Increasing Heat Dissipation in HBM5 >
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Asymmetric Distributed TSV/TPV/PGV/TTV Grid Array Design for HBM5
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< Asymmetric Distributed TSV/TPV/PGV/TTV Grid Array Design for HBM5 >
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Thermal Cu-Cu Hybrid Bonding with Through Thermal Via (TTV) in 
HBM5 for Thermal Reliability
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< Thermal Cu-Cu Hybrid Bonding with TTVs for Thermal Reliability in HBM5 >

HBM
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✓ High thermal conduction

✓ High heat dissipation 

✓ Increasing thermal 
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▪ Thermal Cu-Cu hybrid bondings are implemented on no Cu-pad (no bump) region of HBM except 

S/P/G Cu-pad.

▪ Thermal Cu-Cu hybrid bondings are interconnected to TTVs to maximize heat dissipation of HBM.
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TSV Design Target Flow
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TSV Design Flow
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Temperature-Aware HBM Architecture[2/2]: HBM base die
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▪ HBM base die에는 Thermal sensor와 FSM이통합되어있으며, 온도를실시간으로
모니터링해 thermal level (Level 0/1/2)을판단하고해당상태에따라내부 thermal flag 

register에값을기록함

✓ Base die 내 thermal-aware block 예상면적:약 0.02–0.05 mm² 이하 < 0.5% 추정
▪ GPU 내 Memory Controller는다음두가지방식중하나로 thermal flag를인지하여

정책을적용할수있음

✓ Polling 방식: Controller가 HBM command bus를통해주기적으로 register를읽는
구조

✓ Push 방식: Base die FSM에서상태변화시 thermal_flag를 data path에실어
controller로즉시전달 (interrupt-like signaling)

→ 이구조는 JEDEC burst protocol을유지하면서도, thermal 대응을위한 light-weight 

signaling 경로로사용가능함.

<HBM base die thermal sensing and FSM-based control flag interface>
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Thermal sensor
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FSM logic

Thermal flag 
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Read command(Only 

polling case)

Thermal_flag

Thermal-aware ctrl
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Immersion Cooling Structure for HBM

68

< Concept of the proposed immersion cooling structure for GPU-HBM module >

▪ The proposed Thermal-Flow-Uniformized (TFU)-based immersion cooling structure provides a 

uniform cooling solution to the GPU-HBM module by submerging it in a immersion tank.

▪ The proposed TFU is designed to ensure uniform flow in order to maintain temperature uniformity 

across the high-dense GPU-HBM module.

HBM5

Cooling
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Key Features of HBM6
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1. Electrical Specification

➢ Data Rate : 16 Gbps

➢ Number of I/Os : 4,096

➢ Total Bandwidth : 8.0 TB/s

➢ Number of die stack : 16/20-Hi

➢ Capacity/die : 48 Gb

2. Packaging/Cooling Method

➢ Bump-less Cu-Cu Direct Bonding

➢ Immersion Cooling

3. HBM Architecture

➢ Custom Multi-tower HBMs

➢ Active / Hybrid (Silicon+Glass) Interposer

➢ Network Switch + Bridge Die

➢ BS-PDN

4. AI Design Agent

➢ Hybrid Equalizer + Generative AI based SI/PI Metric Estimation

➢ AGI (Artificial General Intelligence)
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Proposal of Twin Tower High Bandwidth Memory with Near-Memory-

Computing (Twin-HBM-NMC) Architecture

< Overview of Twin Tower HBM with NMC Architecture >

▪ In twin tower high bandwidth memory with near-memory-computing (Twin-HBM-NMC) 

architecture, two DRAM stacks are located on top of the large logic die.

▪ The logic die include NMC units and is connected to the GPU via 2048 interposer channels.

2048 I/O Channels
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Multi HBM-HBM Skybridge Interposer for Efficient 
Near Memory Computing Performance

72

HBM6
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< Side view of Skybridge Interposer Architecture > < Top view of Skybridge Interposer >
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Embedded GPU-HBM Architecture with Active Interposer
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< Embedded GPU-HBM Architecture with Active Interposer >

▪ The local silicon interconnect (LSI) die and L3 cache die is hybrid bonded to form 

embedded SRAM interconnect (ESI) chip, which is placed inside the interposer using 

COWOS-L technology.

▪ Embedded circuit components including VRM, equalizer, PLL, and control circuits are 

embedded in active interposer to enhance electrical performance. 

RDL

GPU
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RDL

PHY

L3 cache die

MCPHY I/O BankBank

PHY

Embedded SRAM Interconnect (ESI) Chip Active Interposer with Embedded Circuits
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다양한 Power Rail에 따른 BS-PDN 구조, HBM, Interposer

74

Ref) System Level Analysis and Design Optimization of Back-side Power Delivery Network for Advanced Nodes, 2024 IEEE 74th ECTC, Kyunghwan 

Song, Samgsung

Gaspard Hiblo, et al, “Process Architectures Changes To Improve Power Delivery”, 2022 IEDM Short Course Dec 4th 2022

▪ 산업에서 개발된 Active 소자와 backside metal을 interconnection 하는 방식의 차이로
총 3가지 구조 Buried Power Rail(BPR), Power Via, Super Power Rail(SPR)로 나뉘어
짐

▪ BPR : backside metal – nTSV - BPR – VBPR – frontside metal(M0) – active 

devices

▪ Power Via : backside metal(BM1) – nTSV – active devices

▪ SPR : backside metal(BM1) – BM0 – active devices

< 기본적인 BSPDN 구조 >

via BPR
M0

active device

BM2

BM1

M1

BM1
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BM2

Buried Power Rail Power Via Super Power Rail
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M1

nTSV

HBM6

Architecture



TERA
TeraByte Interconnection and Package Laboratory

TeraByte Interconnection and Package Laboratory

Hybrid (Silicon + Glass) Interposer for Ultra Large-Scale HBM Package

< Silicon-Glass Hybrid Interposer for Ultra Large-Scale Next Generation HBM >

Large Scale Hybrid (Silicon+Glass) interposer Limitation in increasing 

silicon interposer die size

Glass
Silicon

GPU

HBM

Interposer

Silicon Interposer Silicon Interposer

Glass Interposer

HBM6

Architecture
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Key Features of HBM7
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1. Electrical Specification

➢ Data Rate : 24 Gbps

➢ Number of I/Os : 8,192

➢ Total Bandwidth : 24.0 TB/s

➢ Number of die stack : 20/24-Hi

➢ Capacity/die : 64 Gb

2. Packaging/Cooling Method

➢ Bump-less Cu-Cu Direct Bonding

➢ Embedded Cooling

3. HBM Architecture

➢ Hybrid HBM Architecture

➢ HBM-HBF

➢ HBM-LPDDR

➢ Buffer dies in HBM stack

4. AI Design Agent

➢ LLM based Human Interactive AI Design Agent
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Architecture of High Bandwidth Flash (HBF)

< High Bandwidth Flash (HBF) Architecture for Memory Intensive LLM Inference >
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WL 128 layer

Base Die

HBM7
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Key Features of the Proposed HBM-HBF Architecture – [1/2]
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< HBM-HBF Architecture : Top View >  
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HBM-HBF Architecture for High Memory Capacity & Scalability
HBM7

Architecture
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< Design of HBM-HBF Architecture : Side view and Base die >  
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Data & Command Flow in HCC [2]:
New Data Flow in HCC with GPU Co-Existence

▪ ① Data (Input 𝑥, Input ℎ, Weight 𝑤𝑖𝑗) from DIMM → copy to → HBM / Path: DIMM → HBM 

▪ ② Data (Input 𝑥, Input ℎ, Weight 𝑤𝑖𝑗) from HBM to cache in GPU / Path: HBM → GPU

▪ ③ Matrix calculation in GPU

▪ ④ Save matrix multiplication results to SRAM

▪ ⑤ Save it to HBM / Path: GPU → HBM

▪ ⑥ Copy it to DIMM / Path: HBM → DIMM

→ Since the CPU is not involved in the memory transfer path, delays can be reduced, 

and it has the advantage of fewer interconnection steps and shorter lengths.

①

SRAM

Matrix cal.

⑥

HBM

GPU

DIMM / Data storage 
(DDR, LPDDR)

②

③ ④
⑤

Not Involved

CPU

HBM7

Architecture
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Base Die

Interposer Channel

PHYPHY PHY PHY PHYHBF MCHBM MC

GPU HBM HBF

Cases of HBM-HBF Architecture Data Read/Write Path
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③

① ②

④-⑦
(simultaneous)

< Side-view of GPU-HBM-HBF Structure and Its Data Path Cases >

▪ Case 1: GPU ↔ HBM (Read/Write)

▪ Case 2: HBM ↔ HBF (Read/Write)

▪ Case 3: GPU ↔ HBF (Read/Write)

▪ Case 4: GPU → HBM (Write) & HBM ← HBF (Read)

▪ Case 5: GPU → HBM (Write) & HBM → HBF (Write) 

▪ Case 6: GPU ← HBM (Read) & HBM ← HBF (Read)

▪ Case 7: GPU ← HBM (Read) & HBM → HBF (Write) 

Single-Command 

Execution

Dual-Command 

Execution

(GPU ↔ HBM ↔ HBF)

HBM7

Architecture
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HBM-HBF-Storage Network Architecture
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< HBM-HBF-Storage Network Architecture : Top View and Base Die Design >  
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HBM7 Architecture Integrated with High-Capacity 3D-Stacked 
LPDDR on Glass Interposer

< HBM7 Architecture Integrated with High-Capacity 3D-Stacked LPDDR on Glass Interposer >

84
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Multi Functional Bridge-Die with Stable Signal & Power 

Performance for Multi 24-Hi HBM8
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Signal amplifier circuit

HBM #2 Signal TSV region

IP block

Signal amplifier circuit

HBM #3 Signal TSV region

IP block

Signal amplifier circuit

HBM #1 Signal TSV region

IP block

Signal amplifier circuit

HBM #0 Signal TSV region

IP block

Additional channel region for NMC / HBM
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< Side and top view of proposed multi functional bridge-die >
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Embedded Cooling Structure for HBM
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< Concept of the proposed embedded cooling structure for GPU-HBM module >

▪ The proposed Thermal Transmission Line (TTL) and Fluidic TSV (F-TSV) can cool the HBM module 

efficiently by circulating cooling fluid through the GPU to the interposer and HBM.

▪ The proposed TTL transfers the internal heat within HBM die to the fluid flowing in F-TSV

Logic die

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

..
.

PHY

...

GPU 12 stacked HBM

Heat transfer

F-TSV
TTL

HBM7

Cooling
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Key Features of HBM8
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1. Electrical Specification

➢ Data Rate : 32 Gbps

➢ Number of I/Os : 16,384

➢ Total Bandwidth : 64.0 TB/s

➢ Number of die stack : 20/24-Hi

➢ Capacity/die : 80 Gb

2. Packaging/Cooling Method

➢ Bump-less Cu-Cu Direct Bonding

➢ Embedded Cooling

3. HBM Architecture

➢ Coaxial TSV

➢ Full-3D GPU-HBM

➢ HBM Centric Computing

➢ Full Memory Network

➢ Double Sided Interposer

4. AI Design Agent

➢ LLM based Human Interactive AI Design Agent
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Coaxial TSV/TGV on Interposer
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< Coaxial Organic Line Via (COLV) >
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Full-3D Integrated GPU-HBM with Custom HBM Base Die
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Full-3D Integrated GPU-HBM with Custom HBM Base Die
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▪ Through design customization between memory and processor companies, HBM7 is expected to be 

integrated directly above the GPU(processor).

GPUGPU

Cache Cache

NMC NMC

NVLINKCXL PHY

Controller

PHY

PHY

Controller

PHY

Silicon Interposer

CXL/PCIe

to LPDDR

NVLink

to GPU network

< HBM7 : Full 3D Integration of HBM and GPU with Custom Base Die >

HBM8

Architecture



TERA
TeraByte Interconnection and Package Laboratory

TeraByte Interconnection and Package Laboratory

Next-Generation HBM Roadmap
: HCC Architecture with System-Level Memory Network
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< System-Level Memory Network for HCC Architecture >
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GPU

Matrix cal.

SRAM

Command
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Data & Command Flow in HCC [3]:
New Data Flow in HCC with HBM Centric Computing

▪ ① Command decoder

▪ ② Data (Input 𝑥, Input ℎ, Weight 𝑤𝑖𝑗) from HBM tower or DIMM → copy to → HBM

▪ ③ Data (Input 𝑥, Input ℎ, Weight 𝑤𝑖𝑗) from HBM to SRAM in base die

▪ ④ Matrix calculation 

▪ ⑤ Save it to SRAM in base die

▪ ⑥ Save it to DIMM

→ With no CPU and GPU in the memory transfer path, delays are greatly reduced, and 

there are very few interconnection steps with a much shorter length.

DIMM / Data storage 

HBM

Matrix cal.

GPU

SRAM

Command
HBM

①명령어

②

③

④
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CPU
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GPU
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⑤
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3D Memory Expansion Architecture with Embedded Cooling Structure 
for HBM8 with Double-Sided Interposer [1/3]: GPU-HBM-HBM
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< 3D Memory Expansion Architecture with Embedded Cooling for HBM8 with Double-Sided Interposer using HBM >
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3D Memory Expansion Architecture with Embedded Cooling Structure 
for HBM8 with Double-Sided Interposer [2/3]: GPU-HBM-HBF
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< 3D Memory Expansion Architecture with Embedded Cooling for HBM8 with Double-Sided Interposer using HBF >
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3D Memory Expansion Architecture with Embedded Cooling Structure 
for HBM8 with Double-Sided Interposer [3/3]: GPU-HBM-LPDDR
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< 3D Memory Expansion Architecture with Embedded Cooling for HBM8 with Double-Sided Interposer using LPDDR >
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HBM-Centric Interposer with Upper Layer GPU and Vertical 
Interconnect Embedded Die
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▪ GPU is implemented at top layer of memory stack for heat dissipation. (Thermal Issue ↓)

▪ Additional silicon interconnect pillar die is embedded between HBMs to support power to GPU.
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3D Package-on-Interposer (PoI) Architecture Using a Double-
Sided Interposer with Embedded Cooling Structure for HBM8
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<Proposed 3D Package-on-Interposer (PoI) Architecture Using a 

Double-Sided Interposer with Embedded Cooling Structure for HBM8 >
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Embedded Cooling Double-Side Interposer for HBM8
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<Proposed Double-Side Interposer Architecture with 

Embedded Cooling and Top Heatsink for 3D GPU-HBM>

<Embedded Cooling Structure with 

micropin-fin and tsv>

Core Die
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…

HBM HBM HBM

Inlet Outlet

GPU

PKG/PCB/Interposer

Heatsink attached above HBM

Embedded Cooling Structure

PDN

BSPDN

micropin

TSV

Passive Equalizer

(a)

(a)

<Passive Equalizer in double-side 

interposer>

▪ Both the top heatsink and the double-side interposer are designed with inlet and outlet 

channels to enable efficient liquid cooling for the entire 3D GPU-HBM stack.

HBM8

Architecture
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HBM-to-HBM Communication with Optical Cable (Infiniband) in 

HBM9
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Thank You!
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HBM Roadmap Ver 1.7 Workshop
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HBM 

세대
순번 Time Contents Presenter

Intro 1 09:00 ~ 10:30 Overview of HBM Roadmap Ver. 1.7 by KAIST Teralab 김정호교수
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HBM4/5

2 10:40 ~ 10:55 HBM5-LPDDR Architecture with Customized Base Die 윤지원

3 10:55 ~ 11:20
Design of 3D Near Memory Computing Architecture in HBM5 

for High Performance and Power Efficient Computing
윤지원

4 11:20 ~ 11:30
Hybrid Vision Transformer Based Chip Design Agent for Fast Estimation of Multi-

layer and Multi-power PDN Impedance in Customized Base Die in HBM5 
안현준

5 11:30 ~ 11:40
Transformer-based Reinforcement Learning for TSV Placement and Design 

Optimization considering IR Drop in HBM5
서은지

6 11:40 ~ 11:50
Mamba-Reinforcement Learning-based HBM5 Design Agent for Fast PDN 

Optimization considering Power Integrity
김병목

7 11:50 ~ 12:00
Devformer with Collaborative Distillation for Optimal Decoupling Capacitor 

Placement in HBM5 Custom Base Die
김혜연

8 12:00 ~ 12:10
Reinforcement Learning-based Decap Placement Optimization considering Diverse 

I/O Channel Interfaces in Custom Base Die of HBM5 Memory Pooling Architecture
박준호
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Power Supply Noise Induced Jitter (PSIJ) Modeling and Reinforcement-Learning 

based PI Optimization for HBM5 I/O Interface
신태인
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Basic Structure of HBM (High Bandwidth Memory)

< HBM DRAM Architecture with Base die and Stacked Core dies >

▪ HBM Core die : Memory cell array + peripheral logic, TSV array

▪ HBM Base (Buffer) die : PHY, signal + power TSV/ball array, direct access, decap etc.

TSV

HBM Base Die

HBM Core Die

HBM Base Die

HBM Core Die

Ref) K. Sohn et al., "A 1.2 V 20 nm 307 GB/s HBM DRAM With At-Speed Wafer-Level IO Test Scheme and Adaptive Refresh Considering Temperature Distribution,
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Customized HBM Logic Base Die for Next Generation HBM

< Conventional HBM Logic Base Die > < Customized HBM Logic Base Die >

Standard HBM Base Die

HBM HBMGPU

Custom HBM Base Die

Logic (Foundry) Process Memory Process

Conventional

HBM-GPU Module
Processor (GPU)

HBM Core Die

HBM Logic Base Die

Future

HBM-GPU Module

Processor (GPU)

HBM Logic Base Die
HBM Core Die
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Custom HBM Base die Manufactured in Logic Process

▪ HBM Base die is co-designed by both Fabless vendors and Memory companies, and 

manufactured using logic process.

✓ Active collaboration opportunities between Fabless and Memory.

✓ Enables application of various IP used in logic process to base die.

< HBM Base Die : Where Fabless and Memory Meet >

Fabless Company

✓ Customization 

to meet various 

requirements

✓ Introduce new 

functional unit 

using foundry

Memory Company

✓ Provide tailored 

solution depending 

on fabless vendor

✓ Overcome memory 

scaling, enhance 

performance

HBM Logic Base Die
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HBM Centric Architecture with Custom HBM Base Die
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Interposer
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< Additional Functions Included in Custom HBM Base Die for Next-Generation HBM >
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Offloading CPU/GPU Function & Interconnect to Custom HBM Base Die
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① Command decode unit (instruction)

② Command execute unit (ALU)

③ L2 Cache / SRAM for frequent data access

④ GPU SM cores for near-memory-computing 

& bandwidth extension

⑤ GPU-HBM memory controller

① HBM-GPU Interconnect

② NVLink for GPU-GPU Channel Network

③ PCIe+CXL for CPU / Memory Expansion

④ Infiniband / Ethernet for Node&Rack Level 

Supercomputer Network

⑤ HBM-Link for HBM-HBM Network
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< CPU/GPU Functions in HBM Base Die > < Interconnect Network in HBM Base Die >
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Custom HBM Base Die Design (1/3) : LPDDR Memory Channel for High 
Capacity & Memory Expansion
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▪ The custom base die of HBM4 enables direct access to HBM and LPDDR, providing improved memory 

capacity without the CPU.

< Conventional CPU-GPU Architecture with HBM3 > < HBM4 Architecture with LPDDR >
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Memory Channel
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Custom HBM Base Die Design (2/3) : CXL Memory Channel for Shared Data 
Storage & Memory Expansion
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▪ The custom base die of HBM5 enables direct access to shared memory pool through 

CXL, providing a single unified memory with improved bandwidth and capacity.

< HBM5 Architecture with CXL >

GPU

CXL

CXL
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HBM5 HBM5

CXL CXL
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LPDDR LPDDR

GPU Memory Channel
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Custom HBM Base Die Design (3/3) : Near-Memory-Computing (NMC) 
HBM Architecture
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< NMC-HBM Architecture embedded at Custom HBM Base Die >

GPUHBM

NMC NMC PHY GPU Core PHY

HBM

NMC NMC

▪ HBM4 adopts a custom-HBM base die architecture, introducing various compute 

resources/functions within the base die.

▪ Through the NMC unit in HBM base die, the proposed NMC-HBM architecture achieves 

high bandwidth extension through the TSV and energy efficient channels.
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Conclusion

▪ Sixth-generation HBM, HBM4 is expected to be revealed near 2026, with advanced 

technology innovations compared to previous HBM generations.

▪ The memory architecture of HBM4 is expected to change from the standard HBM 

base die to the customized base die.

▪ Possible examples of custom HBM base die functions : 

✓ Memory controller for HBM-LPDDR memory expansion

✓ CXL interconnect for shared data storage

✓ Near Memory Computing for energy efficient computing

▪ Following this trend, memory-fabless-foundry companies are preparing for the 

change in the semiconductor eco-system.

✓ Collaboration & partnership between memory-fabless vendors

✓ Innovation through advanced 3D packaging technology
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Thank You!
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Compute Characteristics of AI Workloads with Advance in GPU Performance 
& Increased Memory Bandwidth
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< Roofline model by GPU-HBM generation >
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Characteristics of Transformer-based AI Models :
High Latency from Frequent Data Access Between GPU and HBM

Ref) Park, Gunho, et al. "Lut-gemm: Quantized matrix multiplication based on luts for efficient inference in large-scale generative language models." arXiv:2206.09557 (2023).

▪ The latency during transformer-based model inference is dominated by matrix multiplication. 

▪ With the increase in model (parameter) size, latency from frequent data transfer is significant.

✓ Overall performance of the current GPU-HBM system is expected to be limited by the 

excess data transfer between multiple GPUs and memory.

< Inference Latency Occupancy of Transformer models >
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Von Neumann architecture Near-memory-computing (NMC) architecture

Near Memory Computing (NMC) Architecture : 
Integration of Computing Resources Near Memory

117

▪ Near-memory-computing architecture based on GPU-HBM is achieved by integrating GPU 

compute unit (SM & L2 cache) near HBM DRAM.

✓ Long data movement path

✓ High interconnect latency / energy

HBM HBM HBM HBM

SM

Cache

SM
GPU

SM SM

SM

SM

SM

SM

SM SM

SM SM

SM

Cache

SMSM

Cache

SM
NMC Module

✓ Short data movement path

✓ Low interconnect latency / energy

< Comparison of Von Neumann and Near-memory-computing (NMC) architecture >
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SM SM

SM

SM

SM

SM

SM SM

SM SM
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Design of 3D Near-Memory-Computing Architecture in HBM5 : 3D NMC-HBM
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3D NMC-HBM TSV3D NMC Processor Die

L2 Cache / NoC

SM SM SM SM SM

SM SM SM SM SM

3D NMC-HBM PDN

P/G Plane

P/G TSV

Signal TSV Power TSV Ground TSV

3D NMC-HBM 3D NMC-HBM

GPU

Interposer

HBM HBM

< Key Features of the designed 3D NMC-HBM Architecture >
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Die Area Assumption of 3D NMC-HBM Architecture
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▪ The design of the 3D NMC-HBM architecture includes a NMC processor die stacked above 

HBM DRAM stack.

▪ The NMC processor die area is assumed based on physical dimensions of HBM.

✓ 10 processing cores (GPU SM) + 0.75 MB L2 Cache + NMC Controller

< 3D NMC-HBM PDN Structure >
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< Physical Layout of 3D NMC Processor Die >
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System Configuration of 3D NMC-HBM Architecture 
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< System Configuration of NMC-HBM Architecture based on V100 GPU >
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Calculating Arithmetic Intensity of GEMM Workloads
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Ref) https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

Ref) Baidu Research - Deepbench

▪ General Matrix Multiplication (GEMM) is the fundamental building block for many 

operations in transformer network.

▪ A basic GEMM operation defined as D = 𝛼 AB + 𝛽 C, requires a total of M·N·K multiply 

and accumulate (FP16 MAC) operations, equal to a total of 2·M·N·K FLOPS.

▪ The number of data access from local memory is 2·(M·K+N·K+M·N).

Arithmetic Intensity [FLOPS/byte] =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝐿𝑂𝑃𝑆

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠
= 

2 ∙ (𝑀 ∙ 𝑁 ∙ 𝐾)

2 ∙(𝑀 ∙ 𝐾 + 𝑁 ∙ 𝐾 +𝑀 ∙ 𝑁)
= 

𝑀 ∙ 𝑁 ∙ 𝐾

𝑀 ∙ 𝐾 + 𝑁 ∙ 𝐾 +𝑀 ∙ 𝑁

< Basic Structure of GEMM Operation >

GEMM
Matrix Dimension Arithmetic Intensity 

[FLOPS/Byte]M N K

① 5124 1500 2048 740.68

② 7680 1 2560 0.99

③ 6144 4 2048 3.99

④ 512 3000 1536 340.43

⑤ 35 1500 2560 33.75

< Arithmetic Intensity of GEMM workloads >
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K C
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M 𝛽𝛼

D = 𝛼 A·B + 𝛽 C

FP16 Operation at Tensor Core

Deepbench Benchmark (Inference)
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Performance Evaluation of GEMM Workloads with GPU-HBM Roofline Model
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▪ Assuming the GPU-HBM architecture meets the system’s peak computation capabilities, 

the roofline model of GPU-HBM and GEMM workloads was plotted based on V100.

✓ GEMM ①, ④ : Arithmetic Intensity > 117.19 FLOPS/B → Compute-bound

✓ GEMM ②, ③, ⑤ : Arithmetic Intensity < 117.19 FLOPS/B → Memory-bound 

< Roofline Model of Simulated GEMM Workloads >

Arithmetic Intensity = 
𝑀 ∙ 𝑁 ∙ 𝐾

𝑀 ∙ 𝐾 + 𝑁 ∙ 𝐾 +𝑀 ∙ 𝑁
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Performance Evaluation of GEMM Workloads with NMC-HBM Roofline Model
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Arithmetic Intensity (FLOPS/Byte)
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▪ The proposed NMC-HBM architecture providing higher bandwidth (4,096 GB/s) show 

lowered Compute-BW-Ratio (117.19 → 14.65) 

▪ Memory-bound GEMM workloads (②, ③, ⑤) benefit from higher memory bandwidth within 

NMC-TSV, showing higher performance (FLOPS) when offloaded to 3D NMC-HBM.

< Roofline Model of Simulated GEMM Workloads >
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Performance and Power Evaluation Method of the Proposed NMC-HBM 
Architecture

Channel SPICE Simulation
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Ref) Kandiah, Vijay, et al. "AccelWattch: A power modeling framework for modern GPUs." IEEE/ACM 54th MICRO, 2021.
Ref) M. Khairy, et al. "Accel-Sim: An Extensible Simulation Framework for Validated GPU Modeling," ACM/IEEE 47th ISCA, 2020.

Physical Floorplan

Instruction per cycle (IPC)

Execution time
Average power consumption

Power consumption breakdown

Performance Model
✓ Core latency

✓ NoC latency

✓ DRAM latency, ⋯

Accel-Wattch

(Power Model)

Accel-Sim

(Timing Model)
Performance 

Counters

Architectural simulator

System Configuration
✓ # of SM

✓ # of NoC node

✓ # of DRAM channel, ⋯

Energy Model
✓ Logic unit energy

✓ NoC energy

✓ DRAM energy, ⋯

* On-chip / interposer

✓ Channel delay

✓ Channel energy

* Interconnect length

✓ GPU On-chip

✓ NMC On-chip

✓ Interposer Ch.

✓ NMC TSV

I/O interface based Interconnect model conversion
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Performance and Power Evaluation of 3D NMC-HBM Architecture
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< Simulated Power Consumption of GEMM workloads at 3D NMC-HBM  >
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< Simulated Performance of GEMM workloads at 3D NMC-HBM  >
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Design of Interconnect Structure within 3D NMC-HBM Architecture
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< Cross-sectional view of 3D NMC-HBM interconnect structures >
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VTF Loss & Crosstalk, Eye Diagram Results of 3D NMC-HBM Interconnect
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< Simulated eye-diagram of the 3D NMC-HBM TSV configurations >
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< Simulated Voltage Transfer Function loss and crosstalk of the 3D NMC-HBM TSV >
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Design of 3D Power Distribution Network for 3D NMC-HBM Architecture
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< Hierarchic PDN Configuration of 3D NMC-HBM Architecture with Physical Layout >

▪ The power for 3D NMC-HBM architecture is supplied through the 3D NMC PDN consisting 

of a dedicated power TSV array and a NMC-base die above HBM DRAM.
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Additional P/G TSV Array Placement at HBM Die Edge
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▪ Power supply to the NMC processor die is provided through the P/G TSVs routed through the HBM die.

▪ The baseline P/G TSV array at HBM is located at the center of the HBM die, near the HBM TSV area

▪ Additional P/G TSVs at the die edge are utilized for improving power integrity within NMC-HBM PDN

< P/G TSV Array Placement Design Cases for NMC-HBM PDN >

P/G TSV @ Die Center

HBM Core Die
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HBM Core Die
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Modeled Hierarchic PDN Impedance of NMC-HBM VDD Domain
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▪ Through placing additional P/G TSVs at the NMC processor die edge, the overall resistance and loop 

inductance is reduced from additional parallel PDN loops within P/G HBM TSV.

▪ As a result, SSN Vpeak-to-peak of the NMC PDN operating at higher clock frequency is suppressed.

✓ Peak-to-peak voltage noise @ 1.4 GHz Clock freq : 0.041 V (5.13%) → 0.022 V (2.75%)

< Simulated Impedance of 3D NMC-HBM PDN >
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< Power Switching Noise at 3D NMC-HBM PDN >
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Conclusion & Furtherworks
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▪ A 3D Near-Memory-Computing Architecture based on High Bandwidth Memory (NMC-

HBM) is designed through 3D heterogeneous integration of compute die above HBM.

▪ Analyzed the advantages of proposed 3D NMC-HBM architecture considering compute 

characteristics of processor and arithmetic intensity of GEMM workloads. 

▪ Designed and analyzed NMC-TSV for high bandwidth, energy efficient inter-NMC 

interconnect in terms of signal integrity.

▪ Modeled and analyzed hierarchic 3D PDN components of 3D NMC-HBM architecture for 

suppressed impedance and stable power supply noise.

▪ IR drop & PSIJ from HBM I/O at the 3D NMC-HBM architecture is expected to have a 

significant effect in performance.
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Power Integrity Issue of HBM5

13

4

PCB

VRM

PKG

Interposer

PHY

DRAM

PHY

GPU / NPU

VRM PCB/PKG Interposer Chip

⋰
Power 

Noise

Tx Rx
Interposer channel

< Power integrity issue of next-generation HBM >  

Power noise will be much more severe due to

✓ Increased number of I/Os

✓ Lower supply power trend

✓ More functional blocks and less available PDN area

✓ More power domains and interferences

➢ Tightening power noise margin

➢ Causing severe power supply induced jitter 

(PSIJ) and leading to eye degradation

𝑉𝑆𝑆𝑁𝑉𝐷𝐷

𝑡𝑖𝑚𝑒

w/o PSN w/ PSN
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Multi-layer and Multi-Power Domain of Customized Base Die

13

5

D
A

Memory

Controller

TSV

Area

Memory

Controller

PHY

: SM Core : Memory controller

Next-gen HBM Base Die

: VDDC : VPP : VDDQ

: VDDQL : VCCMC : VCCSM

< Multi-layer and multi-power domain PDN in customized HBM base die >

▪ In customized HBM base die, there are additional power domains such as VCCMC and VCCSM.

▪ They occupy their PDNs with different location and various shape and size, even being intersected

each others.

✓ PDN design complexity increases dramatically

✓ Increased SSC induces severe SSN

➢ PDN design is more challenging in next-gen customized HBM

Core Die

Core Die

≈

Customized Base Die

Multi-layer multi-

domain PDN
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Time-consuming Process of PDN Design Cycle and Demand for 
Fast and Accurate PDN Impedance Estimator

13

6

< Time-intensive design cycle of PDN design using 3-D EM solver>

PDN impedance data

𝑉𝑆𝑆𝑁
𝑉𝐷𝐷Target 

Time

V
o
lt
a
g
e

Power noise analysis

3-D EM Solver

(Ansys HFSS)

Over Several hours

(Time-intensive)

▪ After PDN design, ZPDN is calculated by 3-D EM solver, and power noise is obtained by multiplying

SSC and ZPDN.

▪ However, 3-D EM solver is too time-intensive. So, it’s important to develop fast and accurate PDN

impedance estimator in order to reduce the time for design cycle.

Core Die

Core Die

≈

Base die

Multi-layer multi-domain PDN

PDN Design

Frequency

Im
p
e
d
a
n
c
e : ZPDN

: Ztarget

𝐼𝐹𝐹𝑇( 𝐼𝑆𝑆𝐶(𝑓) × 𝑍𝑃𝐷𝑁 𝑓 )

We should reduce the 

time!
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AI Agent for HBM Design in TeraLab

13

7
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HBM Design
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Human 
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knowledge RAG
Explanation &

Reasoning

Question

Human interactive Agent

CoT

G

D Eye diagram

estimation

RL / IL
Q K V

Attention 

PDN impedance 

estimation

< AI agent for HBM Design in TERALab >
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Proposal of Power Integrity Specialized Agent : ZPDN Estimator

13

8
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D Eye diagram
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Q K V
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PDN impedance 

estimation

< AI agent for HBM Design in TERALab >
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Proposal of PDNFormer : Multi-layer and Multi-domain PDN 
Impedance Estimation Network

13

9

Port 1 (EM solver)
Port 1 (proposed)
Port 2 (EM solver)
Port 2 (proposed)

Frequency

P
D

N
 S

e
lf
 I
m

p
e
d
a
n
c
e

PDNFormer model based PDN 

Impedance Estimation Network

Design of multi-layer PDN 

with multi power domain
PDN Impedance 

Estimation 

< Overall process for generative model based PDN impedance estimation

for multi-layer PDN with multi-power domain > 

▪ Given PDN information, the proposed neural network predicts PDN Impedance in a fast and

accurate manner.

▪ PDNFormer model based multi-layer and multi-power domain PDN impedance estimation is

proposed.

✓ CNN effectively captures spatial relations between different power domains

✓ Attention block understands global relations and integrate all the information from CNN

Power Domain 1

Power Domain 3

Power Domain 2

Power Domain 4

Q K V

Attention (Q, K, V)

Convolution
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Overall Block Diagram of Proposed Neural Architecture

14

0

Input

< Block diagram of proposed neural architecture > 

PDN config.

PDN info.

Port

Pwr

[B,4,5,5,5]

[B,4]

[B,2,2]

[B,2]

Overall PDN 

Feature Extractor

Port Feature 

Extractor

Port Relation

Processor

Power Domain

Extractor

[B,384]

[B,384]

[B,768]

Overall feat.

port feat.

concat

[B,2,100]

Zr

Zi

Refine

Block

[B,384]

[B,384]

gated fusion

+ learnable weighted sum

f2

[B,384]

[B,384]

f1

f3

Σ

PDN 

Impedance

Neural Network Output

▪ Overall PDN configurations, geometrical properties are extracted through:

✓ Overall PDN Feature Extractor Block

▪ Port information (including port position and interactions) and power domain features (to which ports 

are assigned) are extracted through

✓ Port Feature Extractor, Port Relation Processor, Power Domain Extractor

✓ Through gated fusion with learnable weights, the most effective information is emphasized.

▪ Refine block integrate these features and converts them into PDN impedance.

→ 3D-CNN  

→ BN/ReLU

→ FC(384) 

→ Pos-Emb

→ FC 

→ MHA 

→ FC(384)

→ GCN 

→ GAT  

→ GAP  

→ FC(384)

→ CNN 

→ FC(384)

→ Gate-Gen: FC 

→ σ → (G₁, G₂, G₃) 
→ G₁·f₁ + G₂·f₂ + G₃·f₃

→ FC

*FC: Fully Connected layer

*Pos-Emb: Positional Embedding

*GCN: Graph Convolutional Network

*GAT: Graph Attention Network

*GAP: Global Average Pooling

*MHA: Multi-head attention
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Result : Performance Comparison Table

14

1

Table I. Performance comparison by data scale type

Training Data Scale Type
(Model type : unified)

Avg. MAE of Mag/Phase

Mag [dBΩ] Phase [rad]

PDNFormer 3.44 0.25

Computation method Computing device
Inference time for one dat

a sample 

Full 3-D EM solver 

(Ansys HFSS)
Intel i3-14100 CPU 10,000 s

Proposed
Intel i3-14100 CPU < 1 ms

NVIDIA RTX3090 GPU < 1 ms

Table II. Inference time comparison

▪ Performance comparison:

✓ Accuracy: The proposed model achieves an average MAE of 3.44 dBΩ for magnitude and 0.25

rad for phase.

✓ Time efficiency: Compared to a conventional EM solver (Ansys HFSS, ~10,000 seconds), the

proposed method reduces inference time to under 1 ms.
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Result : Data Sample

14

2
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PDNFormer
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PDNFormer
Ground truth

CPDN,(f) CPDN, (f)(1,0)
(1,0)

✓ αsize =1, direction=vertical’ ✓ αsize =1, direction=vertical’

(0,1)

(a) (b) 

Slightly smaller

fres shift​

▪ It can be clearly observed that the predicted impedance profile aligns well with the theoretical PDN

behavior, capturing both the overall impedance trend and specific mode resonances.

< Data sample of PDN impedance > 
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14

5

Die-to-Die IR Drop Issues in Highly Stacked Next Generation HBM

4-HI 12-Hi8-Hi 16-HI / 20-Hi

Bottom core die

Top core die

V
o

lt
a

g
e

Time

✓ High Stack

✓ # of TSVs ↑

✓ Hybrid Bonding

< Increased IR drop in highly stacked HBM generations > < Static IR drop and Dynamic IR drop >

…

VDD

VSS

Rpar Lpar

Rpar Lpar

Iswitch

VL = Lpar
dIswitch

dt

…

VDD

VSS

Rpar Lpar

Rpar Lpar

IPDN

VDD’ = VDD  – IPDN Rpar

Static IR drop

Dynamic IR drop

▪ As HBM technology evolves, height of HBM increases and IR drop between the bottom and top

core dies occurs.

▪ Static IR drop refers to the voltage drop caused by resistive components under steady-state

current conditions.

▪ Dynamic IR drop represents the voltage drop induced by rapid changes in current over time.

…
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Saving

Time

14

6

Decreased Simulation Time by using AI for TSV optimization 
considering IR Drop

▪ TSV placement and design require simulation tools such as Q3D and ADS.

▪ Each simulation run takes over 3 hours, so applying ML-based network can 

significantly reduce the overall computation time.

Trained ML 

Model

Optimized 

Output

MINUTE

• Base Die & Core Die TSV 

Placement Candidate

• TSV Design Parameter

• Voltage Source Map

• Current Sink Map

• IR Drop Map

• Optimized TSV 

Placement

• Optimized TSV 

Design

…

Mathematical

System Modeling

InputTraining Data

ML Model 

Training

HOURS

IR drop 

Analysis 

Simulation

Input

Optimized 

Output

< Conventional & ML-based TSV optimization process considering IR drop >
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14

7

Proposal of Transformer Network-based Reinforcement Learning 
for TSV Placement and Design Optimization considering IR Drop

1. Base Die & Core Die

TSV Placement Candidate

2. TSV Design Parameter

3. Voltage Source Map

4. Current Sink Map

5. IR Drop Map

< Overview of proposed Transformer network-based RL for TSV optimization >

Top Die

IR Drop

Map

Reward (R)

Multi-head

Self Attention

Multi-head

Self Attention

Encoder Decoder

𝑑𝐶𝑢 𝑝𝑎𝑑 ℎ𝐶𝑢 𝑝𝑎𝑑

𝑑𝑇𝑆𝑉
𝑝𝑇𝑆𝑉

G

𝑡𝑜𝑥

P G P

𝑑𝑇𝑆𝑉

𝑝𝑇𝑆𝑉

1. Chage Base Die

TSV Placement

2. Change TSV Design Parameter

3. Change Voltage Source

4. Change Current Sink

TSV Connection

𝑅 = 𝛼 1 −
𝜎𝑉
𝑡𝑜𝑝

ത𝑉𝑡𝑜𝑝
− 𝛽 ∙ ത𝑉𝑡𝑜𝑝 − 𝑉𝑡𝑎𝑟𝑔𝑒𝑡

State (s) Action (a)

Transformer Network

-based Policy (𝝅𝜽)
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14

8

Defined MDP Policy – Transformer Model Network

Encoder

W2

W3

W1

Multi-Head Attention
Multi-Head Attention

Multi-Head Attention

Multi-Head Attention

Add & Norm

Add & Norm

Feedforward Layer

Add & Norm

Multi-Head Attention

Add & Norm

Add & Norm

Feedforward Layer

Add & Norm

Multi-Head Attention

Add & Norm

Add & Norm

Feedforward Layer

Add & Norm

Multi-Head Attention

Add & Norm

Feedforward Layer

Add & Norm

Multi-Head Attention

Add & Norm

Multi-Head Attention

Add & Norm

Feedforward Layer

Add & Norm

Input

O
u

tp
u

t

Layer 1

…

Layer N

Output 

(Action)
Layer N

Layer 1Same Operations

Decoder

< Architecture of Transformer network >

▪ The agent is implemented using a transformer model to predict the optimal TSV placement and design.

▪ Due to the attention mechanism, the model effectively captures spatial dependencies in the PDN layout.

▪ This allows scalable and accurate design optimization without relying on domain-specific heuristics.
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Base Die TSV Placement Candidate /  Voltage Supply Location TSV Design Parameter

Core Die TSV Placement Candidate Votage Supply / Current Sink Values

Defined MDP Action – TSV/PDN Design Variables

14

9

< Action space of the proposed method, including TSV placement, design parameters, 

and PDN configuration >

𝑑𝐶𝑢 𝑝𝑎𝑑 ℎ𝐶𝑢 𝑝𝑎𝑑

𝑑𝑇𝑆𝑉

𝑝𝑇𝑆𝑉

G

𝑡𝑜𝑥

P G P

𝑉𝐷𝐷𝐶
+
-

𝐼
Core die

…

Base die
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15

0

Defined MDP Reward – Uniform IR Drop Distribution 

PHY PHY

< Voltage distribution at the top die visualized as heatmap and grid-based IR drop map >

▪ The first term assigns a weight to uniformity, increasing the reward as the voltage becomes more

evenly distributed.

▪ The second term introduces a penalty for deviation from the average voltage, preventing the

voltage from skewing too high or too low.

𝑅𝑒𝑤𝑎𝑟𝑑 = 𝛼 1 −
𝜎𝑉
𝑡𝑜𝑝

ത𝑉𝑡𝑜𝑝
− 𝛽 ∙ ത𝑉𝑡𝑜𝑝 − 𝑉𝑡𝑎𝑟𝑔𝑒𝑡
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Case 1 (HBM3) Case2 (HBM3E, HBM4) Case3 (Proposed HBM5)

IR Drop Analysis [1/2] – Based on the TSV Placement 
Candidate According to the HBM Generations

15

1

Peripheral Region

< Number of TSV candidate and IR drop results based on placement map at the core & base die >

TSV Design Core Die TSV 

Candidate

Base Die TSV 

Candidate

Current 

Sink [A]

Voltage

Source [V]

Top Core Die

Voltage [V]

Max 

IR Drop [mV]dTSV pTSV

Case1

5um 30um

118*20=2360 402

6.7 1.05

0.9263 123.75

Case2 414*20=8280 1148 1.0351 14.863

Case3 1060*20=21200 1782 1.0385 11.463

Peripheral Region Peripheral Region

# of TSV 251.7% ↑

87.9% IR Drop Improvement

# of TSV 797.5% ↑

90.7% IR Drop Improvement
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IR Drop Analysis [2/2] – Based on the Number of Voltage 
Sources at the base die

15

2

Case 1 Case2 Case3

33.6mV (74.7%) IR Drop Improvement

44.2mV (98.3%) IR Drop Improvement

< IR drop reduction according to the number of voltage source at the base die >

TSV Design Number of Base Die 

Voltage Supply

Current 

Sink [A]

Voltage

Source [V]

Top Core Die

Voltage [V]

Max 

IR Drop [mV]dTSV pTSV

Case1

5um 30um

1

6.7 1.05

1.00498 45.0

Case2 38 1.03854 11.4

Case3 1782 1.04234 0.766
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▪ As HBM continues to scale toward higher stacking, IR drop becomes a critical issue.

To mitigate this, optimization of TSV design and placement is essential.

▪ Moreover, IR drop is significantly influenced not only by TSVs themselves, but also by 

how voltage sources and current sinks are distributed across the base die and core 

dies.

▪ Considering all these factors while minimizing simulation time requires AI-based 

optimization.

▪ Therefore, this study proposes an AI agent framework that derives the optimal TSV 

placement for 16- and 20-layer HBM stacks, using IR drop uniformity as the reward 

criterion.

Conclusion

15

3
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Thank You!
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On-chip 

PDN

PKG Decoupling capacitor

(Decap)

PCB Decap

✓ Too many constraints and intertwined objectives to optimize

HBM5

Challenge in HBM5 Design : 

The Hierarchical PDN & Simultaneous Switching Noise (SSN)
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4K I/O

PCB

PDN

PKG

PDN

Silicon

Interposer

PDN

On-Chip

PDN
VRM

SSN

< Conceptual view of SSN >

< Cross-sectional view of PDN in GPU >
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Environment

Proposal of Mamba-based RL Method for 
HBM5 PDN Optimization Agent

✓ HBM VDDQL PDN

▪ The inputs include the location of probing ports and the number of decaps to be 

assigned (𝑚).

▪ The output is completed HBM5 VDDQL PDN map with assigned decaps.

▪ Proximal policy optimization (PPO) algorithm is used for the RL pipeline.

< Markov decision process (MDP) of the proposed Mamba-based RL method >

: decap

Input Output

: probing port

157

✓ Decap assignment

Action

✓ Probing ports

✓ Decap candidates

State Mamba Actor - Policy

Mamba Critic - Value func

PPO agent

Reward

✓ Suppressed impedance

Probing port

# of decaps

Optimized

PDN 
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< Introduction to Mamba architecture >

▪ Mamba is based on SSM with selective scheme and parallel scan algorithm.

→ Parallel training and linear inference with 𝑶(𝑵) linear computing. 

→ No need to use several GBs of KV cache like Transformer architecture.

▪ Mamba -block can be stacked and the output of one block can be used as the input 

for the next Mamba -block.

Ref) Gu, Albert, and Tri Dao., “Mamba: Linear-time sequence modeling with SSM.”, COLM, 2023.

Introduction to Mamba Architecture

158

Linear

Projection

Conv

SSM

Linear

Projection

Linear

Projection

Input

Output

ht+Bt+1xt+1

ht-1

Bt-1

xt-1

Bt+2

ht+2

xt+2

Bt+1xt+1+Bt+2xt+2Bt-1xt-1 +Btxt
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xt

Bt+1

ht+1

xt+1 ▪ ℎ𝑡 = 𝐴 ∙ ℎ𝑡 − 1+ 𝐵𝑡 ∙ 𝑥𝑡
▪ 𝑦𝑡 = 𝐶𝑡 ∙ ℎ𝑡

: Keep in SRAM

: Keep in HBM

: Multiplying A

• ht : hidden state at t

• A : State evolution

• Bt : Input influence 

• Ct : Output translate
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Modeling of Hierarchical HBM5 VDDQL PDN
H

B
M

4
 P

H
Y

PKG & PCB PDN model 

(Lumped R, L, C)

③ On-interposer 

meshed P/G plane model

(192 top ports, 180 bottom ports)

② P/G 𝜇-bump & 𝜇-via 896 pairs

(192 top ports, 192 bottom ports)

① On-chip grid P/G plane model

(64 probing ports, 288 decap candidates,

192 bottom ports)

• • •

④ P/G TSV 1,440 pairs

(180 top ports, 180 bottom ports)

• • •

• • •
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< Modeling and configuration of HBM5 VDDQL PDN >
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# of training epoch# of training epoch
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Training Loss and Reward Convergence Verification of the 

Proposed Method

▪ The  loss curves show convergence to -0.2, which means the policy optimization 

process stabilizes over training epochs.

→ Negative actor loss indicates that the policy is improving in an optimal direction.

▪ The training reward curve also steadily increases and evaluation reward curve 

stabilizes after 800 epochs.

160

< Training loss and reward convergence graphs of the proposed method >
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Optimized Result in HBM5 VDDQL PDN : 

Decap Assignment and Impedance Suppression

161

< 64 decaps assignment by proposed method >

1 100.1 30

0.1

1

0.01

2

Frequency [GHz]

T
ra

n
s
fe

r-
Im

p
e
d

a
n

c
e

(Z
1

2
+

Z
1

3
+

Z
1

4
) 

[Ω
]

: Zoptimized

: Zbare

< Transfer-impedance curve comparison >
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< Self-impedance curve comparison >
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Performance Verification by Comparison to Conventional 

Optimization Algorithm and Transformer-based RL

162

64 decaps

assignment
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8

Avg

Reward

Time

[sec]

RS {500} 8.127 8.010 8.488 8.320 8.081 8.061 8.140 8.149 8.172 28.5

GA {500} 8.146 8.026 8.651 8.452 8.085 8.097 8.168 8.186 8.226 30.9

Transformer-

based RL {1}
8.199 7.988 8.787 8.535 7.955 8.029 8.202 8.168 8.233 0.1

Proposed {1} 8.257 8.034 8.858 8.520 8.129 8.127 8.162 8.233 8.290 0.1

▪ For performance verification, the proposed method is applied to unseen test probing 

port data sets.

▪ With a single inference, the proposed method outperforms conventional optimization 

methods with less computation time, verifying its reusability.

→ 99.65 % ↓ than RS {500} and 99.68 % ↓ than GA {500}

▪ The proposed method requires 17.9% less training time than Transformer-based RL.

→ 3, 200 minutes compared to 3, 900 minutes.

< Comparison between RS, GA, Transformer-based RL and proposed method >

※ { } is # of reward calculation, RS : random search, GA : genetic algorithm
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✓ For the first time, I proposed a Mamba-based RL method for HBM5 PDN 

optimization agent.

✓ The proposed method can instantly find optimal decap assignment solution while 

suppressing PDN impedance.

✓ The proposed method outperforms the RS and GA by achieving better performance 

and Transformer-based method with lower computational cost, with reusability.

➢ I have proven that the Mamba network can be used as a policy network for 

optimization problems.
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Thank You!
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Power Integrity Issues in Hierarchical Power Distribution Network of 
HBM Gen. 5 NMC-Integrated Architecture

< Power Integrity Issues in HBM Gen. 5 

NMC-Integrated Architecture >

▪ In 3D NMC-HBM Gen. 5 architectures, power delivery to the NMC processor die is often unstable due 

to the resistance and inductance along the power supply path. 

▪ This instability becomes particularly severe when the processor die rapidly switches and demands 

high current, leading to significant simultaneous switching noise (SSN) issues.

▪ Therefore, it is essential to strategically place sufficient on-chip decoupling capacitors, such as MIM, 

MOS, or cell capacitors, to effectively lower the power delivery impedance.
16
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< SSN Reduction through 

Decoupling Capacitor Placement >
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7

▪ Decoupling capacitors (Decaps) are essential for ensuring reliable power delivery in 3D NMC-HBM.

▪ Placing decaps close to the die shortens the power delivery path, minimizing voltage fluctuations caused 

by power grid resistance and inductance. This is particularly effective in suppressing simultaneous 

switching noise (SSN) during fast switching and high current demand.

▪ Although having more Decaps is beneficial, their number is limited by spatial constraints and cost.

Therefore, it is crucial to optimally place a minimal number of Decaps in the most effective locations.

➢ A combinatorial optimization problem for the optimal placement of a given set of decaps.

3D NMC-HBM

HBM

< DRAM Process-based Decoupling Capacitor Die for Reliable HBM Power Supply >

…R𝑂𝑓𝑓𝑐ℎ𝑖𝑝 Loffchip
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+

−

𝑪𝐝𝐞𝐜𝐚𝐩 NMC𝑪𝐝𝐞𝐜𝐚𝐩……

Base Die
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Necessities of AI Agent for Decap Placement Optimization [1/2]: 
NP-Hard Nature of Decap Placement Problem 

✓ Size of PDN: 𝑁 ×𝑀

✓ Number of Probing Point: 1

✓ Number of Keep-out region: 0≤ 𝑘o ≤ 15

✓ Number of decap: 𝐾

Full Search Space = Number of possible problems × solution space for each problem ≈ ∞

Number of possible problems = 𝑁𝑀 × σ𝑘=0
15 𝑁𝑀−1

𝑘o

Solution space for each problem = 𝑁𝑀−1−𝑘o
𝐾

Probe Keep-out regions 

▪ Decap placement task is to place given number of decaps for N x M PDN with an arbitrary 

probing port and random keep-out region.

▪ Decap placement problem is formulated as an NP-hard problem, which has an infinite search 

space (i.e, infinite number of possible solutions)

▪ Therefore, leveraging an AI agent is essential to efficiently explore solution spaces far 

beyond what human engineers can visualize or enumerate, enabling the discovery of novel 

and highly effective decap placement strategies.
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Necessities of AI Agent for Decap Placement Optimization [2/2]: 
High-Cost Reward Calculation through Time-Intensive Simulation

▪ The value of reward is a quantitative representation of impedance suppression and is computed as:

Reward =෍

𝒇∈𝑭

(𝒁𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒇 − 𝒁𝒇𝒊𝒏𝒂𝒍 𝒇 ) ∙
𝟏 𝑮𝑯𝒛

𝒇

where 𝐹 is a set of 201 frequency points linearly distributed over the range 100MHz - 20GHz.

▪ Reward calculation involves

1) multiple matrix-multiplication (high computational demand → time-intensive) 

2) frequency- and position- dependent large matrix (high memory usage)

▪ Therefore, minimizing the number of optimization iterations is crucial. This can be achieved by 

training an AI agent, which can efficiently parameterize and learn the underlying relationships.
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𝑍𝑓𝑖𝑛𝑎𝑙 𝑓

< Graphical Representation of Reward Metric for PDN Decap Placement >
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Imitation Learning of DevFormer with Symmetricity Exploitation

< Imitation Learning of DevFormer-Collaborative Symmetricity Exploitation (CSE) Framework >

Action Policy, 𝑝𝜃

Guiding expert Labels
Expert Policy

(Genetic Algorithm)

Optimized PDN (sK)

Expert Exploitation

Initial PDN (s0)

: Probing port : Action space: Keep-Out Region : Decap

Actions : a = a1:K

Self-generated Labels

Action Permutation

Transformation, 𝑇𝐴𝑃

Self-Exploitation

②Collaborative 

Symmetricity 

Exploitation

Ref) H. Kim et al., " Collaborative Symmetricity Exploitation for Offline Learning of Hardware Design Solver," NeurIPS 2022 Offline RL Workshop. https://openreview.net/forum?id=FR9NkGgaLw

Ref) H.Kim et al., "DevFormer: A Symmetric Transformer for Context-Aware Device Placement.", ICML 2023 

①Novel

Neural Architecture

DevFormer

HBM Design AI AGENT

DevFormer

Behavior Cloning

Knowledge Distillation

https://openreview.net/forum?id=FR9NkGgaLw
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Architecture of Device Transformer (DevFormer)

< Overall DevFormer Architecture for Decap Placement Optimization Agent >

▪ Devformer is a variant of transformer, specifically designed for decap placement optimization agent:

➢ Devformer is composed of an encoder block and multiple decoder bocks.

➢ Instead of positional encoding in Transformer, DevFormer has a node embedding and probing 

positional embedding, which embeds the distances of each port relative to the probing port.

➢ DevFormer has two extra context neural networks: PCN (probing port context network) and RCN 

(recurrent context network) to use extra embedding to capture contextual information in initial 

design conditions and stages of the partial solution, respectively.
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Collaborative Symmetricity Exploitation (CSE): Learning Scheme for 
Symmetricity Distillation to DevFormer

< A Novel Collaborative Symmetricity Exploitation (CSE) Learning Scheme and Loss Function >

▪ The decoder of DevFormer outputs the decap placement actions auto-regressively while the final design 

is not affected by the order of placement; The DevFormer model inheritably has placement order bias.

▪ To improve generalization capability of DevFormer, CSE was devised to induce action-permutation 

symmetricity so that the model understands that orders don’t matter and improve sample efficiency.
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Performance Optimality and Reusability Verification

Method Number of Samples {M} Average Score

Online Search 

Heuristics

GA, Expert Policy 100 12.56 ± 0.017

RS 10,000 12.70 ± 0.000

Online Test-Time 

Adaptation 

Learning

Pointer-PG 10,000 9.66 ± 0.206

AM-PG 10,000 9.63 ± 0.587

CNN-DQN 10,000 9.79 ± 0.267

CNN-DDQN 10,000 9.63 ± 0.150

Online 

Pretrained

Pointer-RL Zero-shot 9.59 ± 0.232

AM-RL Zero-shot 9.56 ± 0.471

Offline 

Pretrained

Pointer-IL {N=2,000} Zero-shot 10.49 ± 0.119

AM-IL {N=2,000} Zero-shot 11.74 ± 0.075

DevFormer-CSE {N=1,000} Zero-shot 12.88 ± 0.003

< Performance Evaluation of the DevFormer-CSE Framework and Baseline Methods >

RL

IL

Novel  

Neural Net

*N: number of expert data used for training / M: number of samples used for a single problem inference

* Average score of 10 unseen problems are reported.
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Verification in terms of PDN Impedance Suppression

Initial Impedance

AM-RL {M=0}

AM-IL {M=0}

GA {M=100}

GA {M=500}

RS {M=10,000}

DevFormer-CSE {M=0}
The lower the better

< Resulting Impedance Suppressed by Decap Placement by Each Method for Test Case 1 >

< Corresponding Decap Placement Solutions by Each Method for Test Case 1 >
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Solution Tendency Analysis 

▪ Solutions by the search-heuristic methods do not show clear tendency while pretrained methods produce 

clustered solutions. DevFormer-CSE tends to place decaps near the probing port.

GA {M=500}

RS {M=10,000}

Search-Heuristic Methods

GA {M=100}

AM-RL {M=0}

AM-IL {M=0}

Pretrained Methods

DevFormer-CSE {M=0}
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Application of DevFormer to Power Distribution Network of HBM

< Top-view of the Target Hierarchical PDN >

< Side-view of the Target Hierarchical PDN >

Number of Decaps (K)

P
e

rf
o

rm
a
n

c
e

14 Unit

decaps

Method (K=20) Average Score

GA {M=100} 26.44

GA {M=200} 26.46

GA {M=500} 26.51

RS {M=100} 26.38

RS {M=500} 26.40

RS {M=500} 26.42

RS {M=1,000} 26.43

DevFormer-CSE {N = 1,000, M=1} 26.59

< Performance Verification on HBM PDN > < Decap Scalability Verification on HBM PDN >

Base-die
Base-die
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Time-Domain SSN Analysis at a Logic Block on HBM
S
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< Initial Time-Domain SSN at a Logic Block on HBM PDN >

< Resulting Time-Domain SSN by DevFormer-CSE at a Logic Block on HBM PDN >

▪ The initial peak-to-peak SSN was 12.6mV, which was reduced to 0.394mV (96.8% reduction) after 20 

0.1nF decap placement on HBM PDN by DevFormer-CSE. 

▪ This verifies that the decap placement by DevFormer-CSE significantly reduces SSN at a logic block on 

HBM.
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Thank You!
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< Excessive data movement overhead makes AI workloads memory-bound >

▪ Latency caused by data copies across host memory leads to memory-bound issues 

during AI training and inference.

CPU

Memory

NIC

GPU

Memory
Storage

Server

Copy #1Copy #2

CPU

Memory

NIC

GPU

Memory

CPU

Memory

NIC

GPU

Memory

Server 1
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Copy #4Copy #5

Intra-server Data Copy Inter-server Data Copy
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< Conceptual design of HBM-centric Architecture >

▪ This system enables a memory pooling architecture where all processors can access 

the entire memory.

HCA

GPU

Memory

Storage

CPU

Memory
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GPU
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Current Noise 

𝑰𝟐
𝑰𝟏

𝑰𝟑
𝑰𝟒

𝑉𝑖 𝑆𝑆𝑁 = 𝑰𝒊 × 𝑍𝑖 𝑠𝑒𝑙𝑓 +෍

𝑖≠𝑗

𝑰𝒋 × 𝑍𝑖,𝑗 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

Diverse I/O Interface Modeling

Power Integrity Challenges in an HBM-Centric Customized Base 
Die with Diverse I/O Interfaces

182

▪ Simultaneous switching current (𝐼𝑆𝑆𝐶) varies depending on the number of transistors 

and switching frequency.

𝐼𝑠𝑠𝑐 𝑓 = 𝑁𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑜𝑟 ∙ 𝐶𝑙𝑜𝑎𝑑 ∙ 𝑉𝐷𝐷(𝑓) ∙ 𝑓𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔

▪ The conventional PDN design overlooks various 𝐼𝑠𝑠𝑐 types in a single power domain, 

limiting its suitability for optimizing the proposed customized HBM's PDN.

< Comparison of PDN design with considering 𝐼𝑆𝑆𝐶 >

+
−
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PHY
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Verification of Power Integrity Issue for Expanded VDDQ PDN 
with heterogeneous I/O interfaces

▪ The impedance varies depending on the PDN design methodology, which 

consequently results in different levels of SSN.

183

0.1 1 100.01 30
10−1

3

1

Frequecny (GHz)

S
e
lf
 I
m

p
e
d
a
n
c
e
 (
Ω

)

𝐿𝑃𝐾𝐺 𝐶𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑠𝑒𝑟
+𝐶𝑐ℎ𝑖𝑝

𝐿𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑠𝑒𝑟
+𝐿𝑐ℎ𝑖𝑝

𝑅𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑠𝑒𝑟 + 𝑅𝑐ℎ𝑖𝑝

T
ra

n
s
fe

r 
Im

p
e
d
a
n
c
e
 (
Ω

)

0.1 1 100.01 30

10−2

10−1

1

10−3

3

Frequecny (GHz)

𝐿𝑃𝐾𝐺 𝐶𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑠𝑒𝑟 + 𝐶𝑐ℎ𝑖𝑝

𝐶𝑎𝑣𝑖𝑡𝑦
𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒

10 20 30 40 50 60 70 80 900 100

-0.15

-0.05

0.05

0.15

-0.25

0.25

Time (nsec)

V
o
lt
a
g
e
 (

V
)

< Comparison of impedances and SSNs among various PDN designs >
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< Overall reinforcement learning method for PDN optimization >

: probing ports 𝑥𝑝1:𝑝𝑘
: assigned decap 𝑥𝑎1:𝑎𝑡−1

update weights 𝜃

Policy networkInput state Output action

encoder decoder

𝒔 = 𝑃𝑡 , 𝐶𝑡 , 𝑆𝑆𝑁𝑡

𝒂𝒕

Reward Estimator 𝑟 = 𝒂 𝒔

S
S

N
 (

V
)

time (us)

𝑆𝑆𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙

max(𝑆𝑆𝑁𝑝𝑟𝑜𝑏𝑖𝑛𝑔)

Diverse SSC Conditions

+ 𝐼𝑆𝑆𝐶 of each ports

: probing ports 𝑥𝑝1:𝑝𝑘

Customized Base Die PDN Environment
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▪ The state incorporates 𝐼𝑆𝑆𝐶 variations at each probing port, 

< Overall architecture of PDN optimization with SAC algorithm >

AgentEnvironment

: probing ports 𝑥𝑝1:𝑝𝑘
+ 𝐼𝑆𝑆𝐶 of each ports
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State

𝑷𝒕 ∈ 𝑹𝑵×𝟑 ∶ Port state matrix for N ports
• 𝑷𝒕,𝒊,𝟎 = 𝟏 𝑖𝑓 𝑝𝑜𝑟𝑡 𝑖 𝑖𝑠 𝑎 𝑝𝑜𝑟𝑏𝑖𝑛𝑔 𝑝𝑜𝑟𝑡,
• 𝑷𝒕,𝒊,𝟏 = 𝟏 𝑖𝑓 𝑝𝑜𝑟𝑡 𝑖 ℎ𝑎𝑠 𝑎 𝑑𝑒𝑐𝑎𝑝 𝑝𝑙𝑎𝑐𝑒𝑑
• 𝑷𝒕,𝒊,𝟐 = 𝟏 𝑖𝑓 𝑝𝑜𝑟𝑡 𝑖 𝑖𝑠 𝑎𝑛 𝑜𝑛−𝑐ℎ𝑖𝑝 𝑝𝑜𝑟𝑡

𝑺𝒕 = 𝑷𝒕, 𝑪𝒕, 𝑺𝑺𝑵𝒕

𝑪𝒕 ∈ 𝒁𝑴 ∶ 𝑰𝑺𝑺𝑪 type assignment 
• One of the 4 types of 𝑰𝑺𝑺𝑪

𝑺𝑺𝑵𝒕 ∈ 𝑹: Current 𝑺𝑺𝑵 value 
• Current state’s calculated SSN 

< Coordinate based state and action representation >

: Decap assignments
: Probing ports
: 𝐼𝑆𝑆𝐶 assigned ports

𝑥 (𝑚𝑚)

𝑦 (𝑚𝑚)

0 8

8
400 × 400 𝑢𝑚2 unit cell
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Action

Action: Port index to place a decap
• 𝑵 ∶ 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑟𝑡𝑠
• 𝓟 ∶ 𝑆𝑒𝑡 𝑜𝑓 𝑝𝑜𝑟𝑏𝑖𝑛𝑔 𝑝𝑜𝑟𝑡 𝑖𝑛𝑑𝑖𝑐𝑒𝑠
• 𝓓𝒕 ∶ 𝑆𝑒𝑡 𝑜𝑓 𝑝𝑜𝑟𝑡𝑠 𝑡ℎ𝑎𝑡 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 ℎ𝑎𝑣𝑒 𝑑𝑒𝑐𝑎𝑝𝑠

𝒂𝒕 ∈ 𝟎, 𝟏,… , 𝑵 − 𝟏 \ (𝓟⋃𝓓𝒕)

< Feedback-driven decap placement using latest SSN information >

▪ Each action decision reflects the current state including previously placed decaps and 

current SSN value.

▪ Action sequence terminates when the target SSN is satisfied or maximum decap 

count is reached.

Set, SSNt= max(𝑆𝑆𝑁𝑝𝑜𝑟𝑡1, … , 𝑆𝑆𝑁𝑝𝑜𝑟𝑡 𝑛)

S
S

N
 (

V
)

time (us)

𝑆𝑆𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙

max(𝑆𝑆𝑁𝑝𝑟𝑜𝑏𝑖𝑛𝑔)

: decap placed
: probing ports

𝑝𝑜𝑙𝑖𝑐𝑦 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

(𝑃𝑡 , 𝐶𝑡 , 𝑆𝑆𝑁𝑡) 𝑨𝒄𝒕𝒊𝒐𝒏 𝒂𝒕

𝑆𝑡
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▪ Reward can quantifies the SSN reduction at each step and penalizes decap usage to 

achieve maximum performance with minimal resources.

▪ It maintains training stability and balances reward sensitivity from early to late stages.

Reward

𝑅𝑒𝑤𝑎𝑟𝑑 =
𝑆𝑆𝑁𝑡−1 − 𝑆𝑆𝑁𝑡

𝑆𝑆𝑁𝑡−1
− 𝛼 𝛼: 𝐷𝑒𝑐𝑎𝑝 𝑝𝑒𝑛𝑎𝑙𝑡𝑦

Markov Decision Process (MDP) Setting: Reward

188

▪ Justifying simultaneous switching noise (SSN) 

𝑆𝑆𝑁 = max
𝑝i ∈ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑟𝑡𝑠

𝐼𝐹𝐹𝑇𝑝𝑒𝑎𝑘 𝑡𝑜 𝑝𝑒𝑎𝑘 ෍

𝑝𝑗∈𝑎𝑙𝑙 𝑝𝑟𝑜𝑏𝑖𝑛𝑔 𝑝𝑜𝑟𝑡𝑠

𝐼𝑆𝑆𝐶@𝑝𝑗 𝑓 × 𝑍𝑝𝑗𝑝𝑖 𝑓

𝑉𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑆𝑆𝑁3

𝑉𝑆𝑒𝑙𝑓 𝑆𝑆𝑁

𝑉𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑆𝑆𝑁1

𝑉𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑆𝑆𝑁2
𝑃𝑜𝑟𝑡1

𝑃𝑜𝑟𝑡2

𝑃𝑜𝑟𝑡3𝑃𝑜𝑟𝑡4
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Conclusion

▪ In conventional computing architectures, latency-induced memory-bound issues 

arise. To address this, an HBM-centric memory pooling architecture is required to 

minimize repetitive data copies.

▪ However, due to the use of heterogeneous I/O interfaces, the Simultaneous 

Switching Current (SSC) varies by location, leading to location-dependent noise 

issues.

▪ Rather than relying solely on target impedance-based decap placement, performing 

continuous SSN (Simultaneous Switching Noise) analysis enables optimized decap 

placement even in environments where multiple SSCs operate concurrently.

189
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Thank You!
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Tighter Jitter Margin : Limitation of the Data Rate in AI Semiconductor 
and Super-Computer System

192

▪ As the data rate increased, the jitter margins of both PCIe and UCIe became tighter.

▪ The most recent data rate is 32Gbps and 64Gbps, and both have the same Nyquist 

frequency of 16 GHz, and a similar Tx jitter margin ~1.5 ps.
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UCIe (Single-ended)*
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*Tx UTJ of UCIe is estimated based on UCIe specification.

Ref) UCIe 1.1 Specification, PCIe Base Specification 6.0 
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Increased Power Supply Noise Induced Jitter (PSIJ) Proportion of Total 
Jitter in HBM5

1. Power domain is not scaled down with the increasing data rate.

2. HBM I/O interface is vulnerable to power supply noise problem than other memory or 

chip interconnect system.

2-1) Huge transient current (4,096 I/Os)

1-2)  No scaling down of package technology

GPU

4,096 I/O Channels

HBM

Host

PCB/Package

Silicon Interposer

PHY

P/G plane

PSIJ ↑↑

2-2) Compact size and power 

efficiency

1-1) Chip process shrinks w/ high speed

→ longer clock path 

→ PSIJ, power consumption ↑ 
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Custom Base Die
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Target : HBM5 I/O Interface for System-Level PSIJ Reduction

194

➢ To satisfy the target PSIJ, design parameters are assigned by optimally utilizing resources for 

each I/O domain (PDN, Tx, Channel) based on the given random current noise.

CLK

generator

Tx I/O Driver

𝑯(𝒇)
Interposer Channels

𝑺 𝒇

∙ 
∙ 
∙

𝐽 𝑓 = 𝐼 𝑓 × 𝑍 𝑓 × 𝐻(𝑓) × 𝑆 𝑓 × 𝛿(𝑓)

Data

stream

Power Distribution Network (PDN)

𝒁(𝒇)

∙ 
∙ 
∙

∙ 
∙ 
∙

DQS

128 DQ per 1 DWORD

VDDQ

Current Noise 𝑰(𝒇)

Rx clock buffer

PSIJ Factor Resource

PDN PDN Impedance : 𝑍 𝑓 De-cap area

Tx I/O Driver Jitter sensitivity : 𝐻 𝑓 Circuit power

Channel Jitter amplification : 𝑆 𝑓 Routing area
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Proposal of PSIJ based Optimization Agent for HBM5

195

Ball Map

Routing

EQ

Decap

Placement

Optimization Agent

Si interposer

GPUHBM

HBM Design

AI Agent

Simulation Agent

Human 

user

Large language 

model (LLM)
Domain

knowledge RAG
Explanation &

Reasoning

Question

Human interactive Agent

CoT

G

D Eye diagram

estimation

RL / IL
Q K V

Attention 

PDN impedance 

estimation

< AI agent for HBM Design in TERALab >
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Proposal of PSIJ based HBM I/O Interface Optimization Method using 
Discrete-Continuous Space Reinforcement Learning 

196

RL Agent

Environment

Tx Channels

Power Plane

Rx

Discrete-Continuous 

Space Action
State

𝑅 =

Reward
𝐴 = ራ

𝑎∈𝐴𝑑

(𝑎, 𝑥) 𝑥 ∈ 𝑋𝑎

Design parameters : PDN, 

I/O driver, Channel 

Critic Network

Discrete Actor 

Network

Continuous Actor 

Network

State Encoding Network

Discrete action Continuous action···

SSC Noise

𝑆 = {𝐼(𝑓)}

𝑒1

: Target PSIJ is satisfied

𝑒2 − 𝛼 ∙ 𝐴𝑟𝑒𝑎 − 𝛽 ∙ 𝑃𝑜𝑤𝑒𝑟
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Optimization Target in HBM5 I/O Interface

197

Power Distribution Network

On-chip PDN

Interposer 

PDN

PCB/PKG

Jitter occurrence in 

I/O driver

Pre-driver I/O driver

τ𝐷

VDDQ

➢ Number of De-cap

➢ Position of De-cap

➢ Number of driver stage

➢ Transistor size

PDN impedance : 𝑍 𝑓

Jitter sensitivity : 𝐻 𝑓

Jitter amplification 

by channel loss

Interposer channel

Width

Thickness
Height

➢ Channel dimension

Jitter amplification : 𝑆 𝑓

Power

Tx

Channel
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Jitter Spectrum and Time-domain PSIJ Tendency according to the 
Performance Improvement

198

▪ PSIJ in all frequency ranges is gradually reduced. 

▪ The agent efficiently reduces the PSIJ by maximizing the reward to satisfy the target 5.0 ps 

PSIJ at the same time.

▪ As a result, relatively low-frequency jitter is more reduced, and high-frequency jitter is mainly 

remained.
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Optimization Penalty and Trend to Satisfy the Target PSIJ

199

0

1
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9

PDN Tx Driver Channel

5.0ps 5.5ps 6.0ps

▪ The proposed RL-based optimization method has lower penalty than GA for target PSIJ.

▪ PDN is the main factor in determining whether the agent can satisfy the target PSIJ.

▪ I/O driver size can be reduced for lower PSIJ.
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PDN ( # of De-caps) I/O Driver (size of inverter) Channel (width)

: Proposed {1}

: GA {50x100}

: Target 5.0 ps

: Target 5.5 ps

: Target 6.0 ps
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▪ Optimality: The proposed reinforcement learning model has higher optimal rewards with faster computing 

time than the GA algorithm.

▪ Computing time: Conventional GA algorithm requires approximately ~100 times more computing time cost 

than proposed RL-based method.

▪ Reusability: verified that it was optimized through RL learned once for 8 different random tasks.

Performance Verification on the HBM5 Current Noises

200

Method
Reward (Target : 5.5ps)

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

GA {50x100} 32.31 32.43 32.71 32.98 30.68 29.59 32.40 31.99

Proposed {1} 33.10 33.07 32.94 32.83 33.16 33.08 33.02 32.87

< Performance evaluation by rewards of the proposed RL method comparing with GA >

25
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35
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Time
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Thank You!
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HBM Roadmap Ver 1.7 Workshop

202

HBM 

세대
순번 Time Contents Presenter

HBM6

10 13:30 ~ 13:45
Quad-Tower (QT)-HBM6 Architecture for High-Throughput and Low-Latency 

Inference with Signal Integrity Considerations
김태수

11 13:45 ~ 14:00 Large-Scale Hybrid Interposer for Multi-Tower HBM6 Architecture 서해석

12 14:00 ~ 14:15 L3 Cache Embedded (L3E) HBM6 Architecture for LLM Inference 서해석

13 14:15 ~ 14:30
HBM6 Cluster Architecture with Crossbar Network Switch for

High Throughput and Low Latency LLM Inference
윤영수

14 14:30 ~ 14:45
HBM6-Centric Network Design under Traffic Asymmetry

in Heterogeneous HBM Module based Systems
안효원

15 14:45 ~ 14:55
Conditional Diffusion Model-based Imitation Learning for Placement and 

Interconnection Optimization for HBM6
김지훈

16 14:55 ~ 15:05
Generative Adversarial Learning-Based Power Noise Induced Eye Diagram 

Estimation Agent for HBM6
이정현

15:05 ~ 15:30 Break (25분)
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Quad-Tower High-Bandwidth Memory Architecture

20

4

▪ In Quad-Tower HBM (QT-HBM) architecture, four DRAM stacks are arranged in a 2×2 

configuration on a single base die.

▪ The QT-HBM is connected to the GPU via a silicon interposer with 8,096 I/O channels.

< Overview of Quad-Tower HBM Architecture >

GPU

Silicon Interposer

PHY PHY

One

Base Die

Four DRAM Stacks

8K I/O

Channels
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Overview of the QT-HBM with GPU

20

5

< Overview of the QT-HBM with GPU >

Silicon Interposer

QT-HBM

GPU

QT-HBM

QT-HBM

QT-HBM
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Floor Plan of QT-HBM Base Die [1/2]
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Floor Plan of QT-HBM Base Die [2/2]
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DRAM Bandwidth Teardown in QT-HBM 

20

8

▪ From bank group I/O to interface I/O, the number of I/O and data rate are hierarchical.

▪ I/O bus window is extended by time-division multiplexing.

Data path Configuration Bandwidth

Each

Tower

Bank group

(on-chip)

32,768 I/O x 0.375 

Gb/s

(4nCK)

1,536 GB/s

Global

(on-chip)

16,384 I/O x 0.75 Gb/s 

(2nCK)
1,536 GB/s

Die-to-die

(TSV)

8,192 I/O x 1.5 Gb/s 

(1nCK)
1,536 GB/s

Logic die

(on-chip)

8,192 I/O x 1.5 Gb/s 

(1nCK)
1,536 GB/s

Interface

(interposer)

2,048 I/O x 6 Gb/s 

(0.25 nCK)
1,536 GB/s

QT-HBM

(= 4 x Tower)

8,192 I/O x 6 Gb/s 

(0.25 nCK)
6 TB/s

(= 4 x 1,536 GB/s)

< Data path in QT-HBM > < DRAM bandwidth of each data path in QT-HBM >

Interposer

Base Die

2

Tower #0

3

4

DRAM die

Tower #1

Tower #3
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Comparison between QT-HBM and HBM4

209< Comparison between Quad-Tower HBM and HBM4 >

HBM4 2 * HBM4 Proposed Quad-Tower HBM

Overview

Form Factor

DRAM 

Capacity

64 GB

(= 16 hi x 32 Gb)

128 GB

(= 2 * 64 GB)

256 GB

(= 4 * 64 GB)

# of I/O 2,048 4,096 (= 2 * 2,048) 8,192 (= 2 * 4,096)

Data rate 8 Gb/s 8 Gb/s 6 Gb/s

DRAM 

Bandwidth

2 TB/s

(= 2,048 * 8 Gb/s)

4 TB/s

(= 2 * 2 TB/s)

6 TB/s

(= 8,192 * 6 Gb/s)

11 mm

14.2 mm

22 mm

29.5 mm

11 mm

14.2 mm

11 mm

↑ 100% 

↑ 50% 
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GPU-HBM Module Comparison: QT-HBM vs HBM4

210

HBM4-GPU module Proposed QT-HBM-GPU

Figure

DRAM Capacity
512 GB

(= 8 x 64 GB)

1 TB

(= 16 x 64 GB)

DRAM Bandwidth
16 TB/s

(= 8 x 2 TB/s)

24 TB/s

(= 4 x 6 TB/s)

Memory Density
0.106 GB/mm2

(= 512GB / 74*65.4 mm2)

0.144 GB/mm2

(= 1,024GB / 74*96 mm2)

< Comparison of the QT-HBM versus HBM4 with the NVIDIA R100 GPU >

↑ 50% 

↑ 100% 

↑36% 
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Inference Throughput Comparison: QT-HBM vs HBM4

21

1

▪ QT-HBM demonstrates higher throughput and lower latency in LLM inference compared 

to HBM4, due to its higher bandwidth and greater capacity.

< Inference throughput comparison: QT-HBM vs HBM4 >
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Thank You!
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▪ GPU-HBM needs to be scaled out more and more due to increasing requirement of 

AI workloads.

▪ Interconnections outside of interposer goes through substrate, which has much 

higher latency and lower bandwidth compared to interposer channels.

▪ Scaling is limited by both the interposer area and the substrate area.

▪ Silicon interposer scaling is extremely difficult due to warpage/yield/cost issue. 214

Limitation of Current GPU-HBM Architecture: Lack of Scalability 
in Silicon Interposer

GPUHBM HBM

Substrate

Interposer

GPU

HBM

Silicon Interposer

Silicon Substrate

Substrate: 80 mm by 80 mm (6400 mm2)Interposer: x3.3 reticle size (2830 mm2,

current max: 2 GPU + 8 HBM)

GPU: x1 reticle size (858 mm2)

HBM: 11 mm by 11 mm (121 mm2)

< Cross-sectional and top view of conventional GPU-HBM using CoWoS Method >
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▪ Glass interposer can be made bigger than silicon interposer, providing scalability.

➢ Panel process with higher yield, lower cost

➢ Lower warpage issues

➢ Lower loss 215

Advantages of Glass Interposer

< Silicon wafer >< Glass panel >
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< Warpage Issue >

(+) warpage (-) warpage

Si Interposer

Glass Interposer

< Low-loss characteristic >

Glass interposer

Si interposer
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▪ Due to routability from width and space, the number of interconnection between GPU 

and HBM is limited. 

▪ Minimum width/space/metal thickness for Si interposer is much smaller than glass.

▪ So, silicon interposer enables much more finer routing, which leads to more bandwidth.
216

Disadvantage of Glass Interposer: Coarse Pitch Routing

8
0

8
5

 u
m

3920 um

GPU PHYHBM PHY

14 X 70 um/2 = 490 um

14 X 110um/2 = 

770 um8 X

DWORD

#Signal = 48 Signal/DWORD X 8= 384

✓ Width+Space limitation from routability: 770 um * #Layer / (#S + #G)

Glass Interposer: W/S = 2 um, t = 4 um

t

W S

Si Interposer: W/S = 0.4 um, t = 1 um

< Width, space, thickness comparison of glass and Si interposer >
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▪ 2 layer hybrid interposer uses both large scale glass interposer and fine pitch silicon 

interposer for GPU-HBM module.

▪ GPU-GPU, GPU-HBM, HBM-HBM interconnection is done with fine I/O silicon interposer.

▪ GPU module (such as B100)-GPU module interconnection is done with glass interposer.

➢ Conventional structure required substrate interconnection, which has low bandwidth.

▪ Using the hybrid structure, the advantage of both glass and silicon can be used.

▪ However, two layers of interposer require additional bumps, leading to more cost and 

possible electrical performance issue.
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Next Generation Hybrid Interposer [1/2]:
Silicon-Glass 2 Layer Hybrid Interposer 

Substrate

Glass Interposer

Silicon Interposer

GPU-HBM Module

Silicon Interposer

< Cross-sectional and top view of Si-Glass Hybrid 2 Layer Interposer >
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▪ Another viable option is embedding silicon interposer inside glass interposer.

▪ Silicon interposer is placed inside glass interposer cavity.

▪ This can reduce the usage of low yield, high cost Si interposer while maintaining fine-

pitch I/O in necessary regions.

▪ Also, this structure does not need additional bumps between the two interposers.

▪ GPU-GPU, GPU-HBM, HBM-HBM interconnection is done with fine I/O embedded silicon 

interposer.

▪ GPU module (such as B100)-GPU module interconnection is done with glass interposer.

▪ However, difference in thermal expansion coefficient may cause issues.
218

Next Generation Hybrid Interposer [2/2]: 
Silicon Embedded Glass Hybrid Interposer 

Substrate

Glass Interposer

GPU-HBM Module
Silicon Interposer

< Cross-sectional and top view of Si-embedded glass hybrid 2 layer interposer >
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Signal Integrity Analysis: Eye-diagram of Microstrip Line based on 
Silicon Interposer (Length = 5 mm)
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< Eye-diagram of microstrip line based on silicon Interposer >
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Time [ns]
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Time [ns]
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< 4 Gbps > < 6 Gbps > < 8 Gbps >

0.707 V

(58.9 % of VDD)

31.3 ps (12.5 % of 1 UI) 0.369 V

(30.8 % of VDD)

53.3 ps (32.3 % of 1 UI) 0.155 V

(12.9 % of VDD)

70.05 ps (56 % of 1 UI)

▪ To show the electrical performance of silicon and glass interposer, eye diagram test is

done based on GPU-HBM channel (5 mm).

▪ Based on a silicon interposer, it is hard to achieve the data rate up to 6 Gbps without

equalizer for data channels.

▪ This is due to high loss and fine pitch traces.
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Signal Integrity Analysis: Eye-diagram of Microstrip Line based on 
Glass Interposer (Length = 5 mm)
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48.75 ps (39 % of 1 UI)

< Eye-diagram of designed microstrip line based on glass Interposer >

▪ Due to low loss characteristics of a glass interposer, designed microstrip line based on

a glass interposer show better SI performance than that of a silicon interposer.

▪ Based on a glass interposer, it can be possible to achieve the data rate up to 6 Gbps

without equalizer for data channels.
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Signal Integrity Analysis: Eye-diagram of Microstrip Line 
depending on Interposer Material (Length = 10 mm)
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< Eye-diagram of microstrip line (10mm) depending on interposer material >

▪ Based on a glass interposer, it can be possible to achieve the data rate up to 4 Gbps

without equalizer for 10 mm data channel.

▪ So, it is appropriate for long channels between GPU modules, with high bandwidth.

0.205 V

(17.1 % of VDD)142.5 ps (57 % of 1 UI)
0.481 V

(40.1 % of VDD)
71.2 ps (28.5 % of 1 UI)

@ 4 Gbps
0.0
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Thank You!
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4

Limitation of Current GPU-HBM Architecture

HBM

L2 Cache

L2 Cache

Computing Cores

Computing Cores

Computing Cores

P
H

Y
P

H
Y

P
H

Y
M

C
M

C

HBM

HBM

Low 

off-chip 

BW
High 

on-chip 

BW 

GPU

▪ HBM enables higher memory bandwidth than GDDR, but still provides much less 

bandwidth compared to on-chip bandwidth between processing clusters and cache.

▪ This discrepancy creates performance degradation, as LLMs need lots of memory 

access.

< GPU-HBM architecture on-chip and off-chip bandwidth >

Channel Bandwidth Latency

SM core

L1 cache

~30 TB/s ~2 ns

L1 cache

L2 cache 

~20 TB/s ~5 ns

L2 cache

HBM 

~2 TB/s ~100 ns
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5

Overview of Proposed L3E-GPU-HBM Architecture

HBM

PHY

GPU

L2 cache

I/O

GPU Core

Molding

Compound

L3 cache die

MCPHY I/OBank Bank

LSI die Power plane

Hybrid bonding

ESI chip

Cu 

Pillar

< Cross-sectional view of L3E-GPU-HBM >
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High-level Block Diagram of Proposed L3E-GPU-HBM Architecture 

226

48MB L2 cache

GPU

L3 

cache

< Block Diagram of L3E-GPU-HBM >
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SMEM L1
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…
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(Mesh network on chip)

HBM HBM HBM HBM HBM HBM

Local Silicon interconnection

RDL Via P2P Interconnect RDL Via P2P Interconnect 

MC/PHY MC/PHY MC/PHY MC/PHY MC/PHY MC/PHY

48 MB L3 cache

(Mesh network on chip)
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Floorplan of Conventional GPU-HBM Architecture

22

7
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< Floorplan of H100 GPU >
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GPC: Graphic Processing Cluster

MC: Memory controller    PHY: Physical Layer
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0

Floorplan of Proposed GPU-L3E-HBM Architecture

22

8

32 mm

< Revised floorplan of proposed L3E-GPU-HBM >

Total size: 32mm * 42mm = 1344mm2

HBM HBM

8 mm

NVLINK

PCIe

25 mm

132 SM CoreL2 

cache

L2 

cache

27 mm
2.5 mm

L3 cache chipL3 cache chip
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Design of L3 Cache Chip Considering the Area of GPU-HBM

229

25.5 mm

▪ L3 cache is 48 MB on each side, with each slice connected to corresponding L2 slice.

▪ L2 slice (1mm2)is 0.5MB, so L3 cache slice is set as 1MB, total of 32mm2 per side.  

< Embedded L3 cache design >
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▪ A key to L3E-GPU-HBM is enabling fast, high-bandwidth interconnect between L2 cache 

of GPU and L3 cache in interposer.

▪ L2 and L3 cache is connected with short via, enabling ultra-high bandwidth.

▪ L3 cache is connected in mesh, so the data can be read from L3 cache to GPU efficiently.

L2 Cache – L3 Cache Interconnect: Via + Mesh Network
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chip NoC
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< Interconnection scheme of L2 – L3 and L3 cache >
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Reduction of HBM Access by Using L3 Cache as Shared Memory

▪ L2 cache of GPU is managed by “hardware”, which means programmer cannot control the contents.

▪ In L3E-GPU-HBM, L3 cache can be used as “shared memory”, which is programmable.

▪ If K,V matrix is programmed to be stored in L3 cache, HBM access will be most efficiently reduced.

▪ HBM access will decrease from O(dmdh + Bsdh) to O(dmdh) with 96 MB L3 cache.

✓ 73% ↓ for transformer inference with 4096 tokens input and 4096 tokens generated.

< Cache utilization for L3E-GPU-HBM >  
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Weight
K, V

Matrix for

1 head

Hardware

controlled

cache

L2 cache 48 MB

GPU

HBM ~100 GB

18 TB/s 16 TB/s 4 TB/s

L3E-GPU-HBM

Hardware

controlled

cache

Weight

KV Cache

L2 cache 48 MB HBM ~100 GB

GPU
0.8 TB/s18 TB/s

Conventional 

GPU-HBM
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Computing Performance Improvement of Proposed Architecture 
due to Increased GPU Utilization 

23

2

▪ 73% decrease of HBM access by storing Q, K, V in L3 cache and x2.5 increase of 

HBM BW results in performance boost of decode from 44 TFLOPS to 406 TFLOPS.

▪ Prefill process increases from 1209 TFLOPS to 1979 TFLOPS, which is 100% utilization.

Conventional H100 Roofline 

< Utilization improvement of L3E-GPU-HBM 

architecture >

TFLOPS

33.8 412

H100Decode 

(w/ L3 cache)

Arithmetic

Intensity

162

406

1979

(100% utilization)

9.2
Decode 

(conventional)

44
Less HBM 

access due to 

L3 cache

Increased 

HBM BW

L3E-H100 Roofline 

Prefill

(Conventional)

252

Decode

Prefill

1209
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Token Per Second of Proposed L3E-GPU-HBM Architecture
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L3E-GPU-H100 H100 Improvement

Time-to-first-token 0.079 s 0.13 s 38.8% 

Time-to-4096-token 0.49 s 3.88 s 87.3% 

Token/sec 8313 tokens 1057 tokens 686% 

Required 

FLOP

Prefill (input s=4096) 19900 TFLOP

Decode (1 token) 5.1 TFLOP

FFN (1 token) 0.54 TFLOP

< Token per second considering required FLOP and improved performance  > 

▪ Since the FLOPS and required FLOP of inference process is calculated, token per  

second can be obtained by calculating the time of each generated token. 

▪ Time-to-4096-token: FLOP/FLOPS of all 3 stage →
19900

1979∗128
+

5.14∗4096

406∗128
+

0.54∗4096

1979∗128
= 0.290 𝑠

➢
𝑇𝑜𝑘𝑒𝑛

𝑠𝑒𝑐𝑜𝑛𝑑
=

4096

0.493
= 8313 tokens per second for 128 GPU system.

* 4096 prefilled token, 4096 generated token, on 128 GPU with ideal scalability

Used model: Llama3-400B
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Energy Consumption Analysis of L3 Cache and LSI: 
Dynamic Energy Considering Hit Ratio and Length 
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Data

L2 Cache Miss

HBM Access 

L3 Cache Hit

Data

① L3 on-chip
0.071 pJ/bit

② L3 on-chip
0.142 pJ/bit

③ LSI 

0.029 pJ/bit
④ HBM on-chip

0.178 pJ/bit

① Interposer
0.067 pJ/bit

② HBM on-chip

0.178 pJ/bit

L3 Cache Miss

L2 Cache Miss

73% 27%
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5 mm PHY

GPU
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2 mm

4 mm
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L2 miss
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L2 

Cache

ESI 
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interposer
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②

③

Bank

PHY

GPU

Core
PHY

L2 

Cache

Silicon Interposer

5 mm①

② 5 mm

L3E-GPU-HBM GPU-HBM

HBM Access 

< Interconnect energy breakdown of proposed architecture >

▪ Depending on distance travelled per hit/miss, energy per access bit is obtained.

▪ With access bits, the total energy consumption can be achieved.
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Energy per Token Reduction of L3E-GPU-HBM

▪ To obtain energy per token of proposed architecture, three factors are considered.

➢ 1) Required HBM access per token, 2) reduced HBM access, 3) energy per bit of 

each channel

▪ The proposed architecture decreased energy consumption by 40.4%.
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L3 cache on-chip channel

HBM on-chip channel LSI

< Energy per token reduction for L3E-GPU-HBM >

Access bits 

per 4096 

token

H100
L3E-GPU-
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HBM 2300 Tb 623 Tb

L3 Cache - 1676 Tb 119 154 

107 
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111 
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100

200

300
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Conventional L3E-GPU-HBM

Energy per 

4096 token (J)

563J

336J

40.4% Reduction

< Required HBM access for 4096 token > 
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Signal Integrity Analysis: Width and Space by Routability of 
Signal and Ground
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3 Layer

W + S < 3um

3 Layer

W + S < 3.67um

3 Layer
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Checker 1S to 1G 2S to 1G Hybrid Conventional

SL US

▪ To verify signal integrity, various stack-ups of LSI is analyzed.

▪ The sum of width and space is chosen under routability constraint.

< LSI stack-up considering routability and signal integrity >
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Signal Integrity Analysis: Eye Diagram of Various LSI Stack-ups
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▪ For 2 layer, only 1 to 1 passes, and for 3 layers, all cases pass the eye diagram test. 
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Thank You!
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240

< Next-Generation HBM6 Architecture based Research Roadmap by Teralab >

Predictive Problem in HBM6 Generation

▪ In the HBM6, memory capacity is doubled to save more matrix data of attention 

mechanism.

▪ However, high latency is inevitable in the process of exchanging data with HBMs which are 

in the farthest away from the GPU.

▪ It is still vulnerable to memory intensive workload due to the memory bandwidth bottleneck.

1. High latency in 

long interconnection

2. Memory bandwidth bottleneck
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Main Concept of the Proposed High-Bandwidth Memory Cluster 

Architecture with HBM Network Switch

241

< Side view of HBM cluster architecture with HBM network switch >

SM SM SM

GPU

NMCNMC NMCNMC

switch

Doubled memory

capacity

High bandwidth crossbar 

on-chip interconnection

Active interposer

HBM HBM

▪ The proposed HBM cluster architecture integrated crossbar type HBM network switch 

in the active interposer level to provide HBM to HBM communication.

▪ For the HBM network switch, customized logic die is applied to reallocate the location 

of HBM elements.

▪ HBM network switch is connected to 4 HBM’s corner PHY and designed to provide 9.6 

TB/s in maximum.
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Floorplan of the HBM Cluster Architecture with HBM Network Switch

< Floorplan of the proposed HBM cluster with GH100 GPU Architecture >
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Ref) NVIDIA Hopper Architecture In-Depth | NVIDIA Technical Blog
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Key Advantages of HBM Cluster Architecture [1/3] : Increased 

Memory Capacity

< Memory capacity increase by additional HBMs >
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Batch size

▪ By extending the number of HBMs, proposed HBM cluster architecture can store twice 

larger KV cache in HBMs.

▪ For example, the LLaMA2-7B model requires the memory capacity required to store KV 

cache based on the following formula.

𝐾𝑉 𝐶𝑎𝑐ℎ𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐿𝐿𝑎𝑀𝐴2−7𝐵 = 0.52 𝑀𝐵 × 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 × 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

▪ Therefore, the batch size can be doubled at the same sequence length with our HBM 

cluster architecture.

2x batch size

LLaMA2 - 7B 

(sequence length = 16K)
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Key Advantages of HBM Cluster Architecture [2/3] : High Bandwidth 

Utilization of Crossbar type HBM Network Switch

▪ In our proposed architecture, GPU-HBM channel and NMC on-chip channel totally 

requires 2.4 TB/s.

▪ However, conventional HBM’s TSV only provides 0.8 TB/s → Bandwidth bottleneck

▪ Our proposed HBM network switch provides 2.4 TB/s to each HBM and communicates 

with other HBM network switch by 9.6 TB/s.

< High bandwidth data movement from HBM network switch >
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Key Advantages of HBM Cluster Architecture [3/3] : Scalability

< Expansion scalability of HBM network switch >

245

HBM HBM

HBM HBM

HBM HBM

HBM

HBM

HBM

GPU side

✓ Expandable memory

capacity infinitely

▪ Our HBM network switch connect 4 HBMs in each corner PHY.

▪ Therefore, HBM network switch can be applied in any GPU-HBM module architecture to 

expand memory capacity. → High scalability

✓ Not affected by the 

reticle size limit.

✓ Applicable to any 

GPU-HBM module.

Expandable 

range
Proposed range

···

···

···
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Data Path  Analysis of HBM Cluster Architecture in terms of HBM 

network switch usage

< Dram core die access path comparison in terms of HBM network switch usage >

246

HBM core die access w/o HBM network switch

HBM core die access w HBM network switch

Scenarios Other HBM core die access when L2 cache miss

Interconnect length

Without switch With switch

16 mm (interposer) + 

75.1mm (on-chip)

= 91.1 mm

44.92 mm (on-chip)

51% reduce

DRAM core die access 

with crossbar switch

DRAM core die access 

on conventional path
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Performance Analysis of HBM Cluster Architecture : Increased Token 

Throughput

< Token generation process comparison of two architectures >
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Conventional architecture (H100-HBM3)

KV cache KV cache (2x batch size)

Generated Token

▪ In the ideal condition (perfect memory bottleneck, bandwidth utilization and no overhead), 

proposed HBM cluster architecture can increase throughput by up to 10 times.

𝐵𝑚𝑎𝑥 =
𝑀𝐶

𝑆𝐿 × 𝛼

Bandwidth

𝑡𝑡𝑜𝑘𝑒𝑛 =
𝛼

𝐵𝑊 𝑅 =
𝐵𝑚𝑎𝑥

𝑡𝑡𝑜𝑘𝑒𝑛
∝ (𝐵𝑊 ×𝑀𝐶)

𝑅𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

𝑅𝑐𝑜𝑛𝑣𝑒𝑛𝑡
=
5𝐵𝑊 × 2𝑀𝐶

𝐵𝑊 ×𝑀𝐶
= 𝟏𝟎

B : batch size

t : token generation time

MC : memory capacity

SL : sequence length

𝛼 : KV cache utilization per token

R : token throughput

Proposed architecture

(2x memory capacity / 5x bandwidth)

HBM
Output

prompt

x 10

in maximum
NMC / SM cores
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Detailed Token Throughput Analysis in Future LLM Service
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Prompt Generation

GPU0
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→ Low GPU utilization in conventional architecture

Prompt Generation
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GPU1
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···
→ High GPU utilization in HBM6 cluster architecture

𝑇𝑃𝑂𝑇 = 2 𝐵𝑦𝑡𝑒 × # 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 × max(
1

𝐵𝑊
,

1

𝐹𝐿𝑂𝑃𝑆
)

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑇𝑜𝑘𝑒𝑛 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 ≈
1

𝑇𝑃𝑂𝑇
=

𝑇𝑜𝑡𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

2 𝐵𝑦𝑡𝑒 × (# 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)

AI Rack scale 

performance

GPU-HBM 

module bandwidth
TPOT

Token per second 

@ single GPU

Token per second 

@ Rack scale

Conventional 

H200 NVL72
4.8 TB/s 115.74 ms 0.12 Token/sec 8.64 Token/sec

Proposed HBM 

Cluster NVL 72
24 TB/s 23.15 ms 0.6 Token/sec 43.2 Token/sec

→ Memory bound

* Future AI model assumption : 20 Trillion
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▪ In the HBM6, memory capacity is doubled to save more matrix data of attention 

mechanism.

▪ However, high latency and low memory bandwidth are still bottleneck of the GPU-HBM 

module.

▪ Therefore, we propose a high-bandwidth memory cluster architecture with HBM network 

switch.

▪ Our HBM network switch connect every HBM logic die to reduce interconnect length and 

provide high bandwidth for near memory computing cores.

▪ In the ideal condition, our proposed architecture can generate 10x larger tokens.
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Thank You!
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• GPU-HBM fits large-scale AI in datacenters—but not small edge devices.

• In compact devices like AR glasses, GPU drawbacks (size, cost) dominate.

• Systems will likely evolve toward a modular chiplet-based architecture, where each 

function is implemented as a specialized module—similar to AP SoCs.

• Congestion occurs near HBM nodes due to the many-to-few traffic pattern.

• Each heterogeneous node has distinct bandwidth requirements toward the HBM.

< Centric HBM6 in Heterogeneous Module Based Chiplet System >

25

2

Beyond HBM Enables Direct Access to Shared Memory Pool: 

Sharable HBM in Heterogeneous Chiplet System



Terabyte Interconnection and Package LaboratoryTERA
Terabyte Interconnection and Package Laboratory

25

3

Interconnection Network Constraints of Module based Chiplet

System including Shared HBM: Physical View

• Signal Integrity Challenges Hinder Topology Design: 2D-Mesh

• 3D ICs concentrate bandwidth at base-die edges — but shoreline I/O is limited.

• Reticle/Shoreline constraints limit I/O bandwidth; achieving higher throughput requires 

multi-directional edge interconnects.

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑆ℎ𝑜𝑟𝑒𝐿𝑖𝑛𝑒 ∝ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑑 𝑜𝑛 𝐸𝑑𝑔𝑒 ∝ {𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ}

HBM

NPU

Video

Accel

GPU

Video

Accel

GPU

CPU

CPU

NPU

Video

Accel

< ShoreLine Limitation >< Topology for High-Bandwidth Chiplet >

Tightly coupled 2D-Mesh (O) Long channel 2D-Torus (X)

HBM

D
2
D

 P
H

Y

D2D PHY

D
2
D

 P
H

Y

D2D PHY

1TB/s

2TB/s

4TB/s

ShoreLine

GPU

CPU

CPU

HBM

NPU

NPU

Video

Accel
GPU
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Example Issue Study of Detoured Routing by Shoreline 

Limitation

• Case 1. Find Best Placement considering required bandwidth and directions of traffic

• Case 2. Find Best Routing Strategy considering required bandwidth and directions of traffic

• Case 3. Find Proper Adaptive Routing condition based on Latency-Throughput Curve

< Simple Example between 2 node > < Latency-Throughput Curve >

Source

Destination
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Practical Example including HBM6

• Rule 1. HBM nodes must not be placed adjacent to each other.

• Rule 2. Avoid placing heavy-bandwidth source nodes adjacent to each other.

• Rule 3. Heavy-bandwidth source should be positioned near the center of the HBM nodes.

→ Objective: Minimize average hop count (latency), Maximize HBM channel utilization

< Practical Case Example >

Core Nodes (Darker colors indicate higher bandwidth) 

No Traffic toward HBM HBM Bandwidth 1X

HBM Bandwidth 2X HBM Bandwidth 4X

HBM Node (Bandwidth: Unidirection 4X, Bidirection 8X)

< Potential Solution >
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Num BW

2 4TB/s

2 2TB/s

20 1TB/s

25

6

HBM-Centric Optimization of Chiplet Placement and 

Interconnect Design

• Step 1: (GA Outer Loop) Place chiplets based on Ground Rule

• Step 2: (GA Inner Loop) Find Optimal Routing Considering QoS, Deadlock Free

• Step 3: Calculate Average Hop-Count of Each Node

• Step 4: Simulation under Various Traffic Condition

→ The iterative loop between Step 1 to Step 3 results in a long design cycle, which can 
be significantly shortened through an ML-based approach.

Input

Required BW of Each Chiplet

Output

Optimized Chiplet Placement

Optimized Routing Design
Maximize HBM utilization

Minimize average latency

Reward / Fitness

𝝎𝟏 ∙ 𝑹𝒐𝒖𝒕𝒊𝒏𝒈 𝑹𝒂𝒕𝒊𝒐 − 𝝎𝟐 ∙ 𝑨𝒗𝒈𝑯𝒐𝒑 − 𝝎𝟑 ∙ 𝑴𝒂𝒙𝑯𝒐𝒑
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Signal Integrity Problem on HBM6 Generation
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Silicon Interposer

XPU

PHY
Twin-HBM-NMC

PHY
NMC NMC

PHY
Twin-HBM-NMC

PHY
NMC NMC

Aggressor 1

Total loss

Dielectric loss

Conductor lossIn
s
e

rt
io

n
 L

o
s
s

Frequency

Channel loss

Time

V
o

lt
a

g
e

Inter-symbol 

interference (ISI)

bitn bitn+1

ISICrosstalk

Tx Rx

FEXT

NEXT

Aggressor 2

② Interconnection

① Placement
HBM 1 HBM 2 HBM 3 HBM 4

< Signal integrity problem on HBM6 Generation >
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AI Agent-based HBM6 Placement and Interconnection Optimization Solver

26

0

𝑖1 = ℎ1, ℎ3, 16𝐺𝑏𝑝𝑠
𝑖2 = ℎ1, 𝑥1, 48𝐺𝑏𝑝𝑠
𝑖3 = ℎ2, ℎ3, 16𝐺𝑏𝑝𝑠

H1 H2 H3 X1

b1

a1

b2

a2

b3

a3

b4

a4 X1

H1

H2

H3

(h1, h3): {Channel1, EQ1, Term1}

(h1, x1): {Channel.2, EQ2, Term2}

(h2, h3): {Channel3, EQ3, Term3}

Output

Optimized 

XPUs & HBMs Design

Fast and Optimal Solver

based on AI Agent

Input: 

XPUs & HBMs / 

Interconnections

Fast Optimized 

XPU & GPU Design Optimized Interconnections

HBMs & XPUs

Interconnections

Optimized placement

▪ AI agent-based HBM6 placement and interconnection optimization is necessary to reduce 

the design cycle considering signal integrity.

▪ By training the AI in terms of the relationship among SI performance, and the HBM6 

placement and interconnection solution, the SI design guide can be extracted fast with 

inference of trained neural network.

< AI Agent-based HBM6 placement and interconnection optimization >
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Proposal of Conditional Diffusion Model-based Imitation Learning for 
HBM6 Placement and Interconnection Optimization

26

1

HBM Placement Algorithm

b1

a1

bn

an

...b2

a2

Optimized XPUs & HBMs 

Placement

Optimized HBM & XPU

placement / interconnection

design with driver condition 

Objective function = 𝛾𝛻 𝑙𝑜𝑔 𝑝 𝒙𝑡 𝑐 + 1 − 𝛾 𝛻 𝑙𝑜𝑔 𝑝 𝒙𝑡

Conditional score Unconditional score

H1
H2

H3

H5H4

X1

Stage 1: Placement Stage 2: Interconnection with Tx/Rx

𝑖1 = ℎ1, ℎ2, 16𝐺𝑏𝑝𝑠
𝑖2 = ℎ2, ℎ3, 48𝐺𝑏𝑝𝑠

Hn

HBMs & XPUs / Interconnections

Optimized HBM & XPU

Interconnection Design

Random

Noise

Expert Data

Condition:

HBM & XPU 

placement

Imitation

Learning

cDiffusion model

State

Action

< Detail procedure of HBM6 placement algorithm >

H1 H2

H1
H2

H3

H5H4

X1
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Detail Procedure of HBM Placement Algorithm (HPA) 

26

2

Objective function: 

𝑅𝑛
𝑚 = − ෍

ℎ𝑎, ℎ𝑏 ∈ ℰ

𝑤 ℎ𝑎, ℎ𝑏 × 𝑑 ℎ𝑎, ℎ𝑏 + 1000 [1 − 𝑎𝑑𝑗 ℎ𝑎, ℎ𝑏 ]

+[(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)((𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛)]

H1 H3

X1 H2

48 Gbps 

→ W1

16 Gbps

→ W2

16 Gbps

→ W3

① HBMs & XPUs 

Interconnections

② Simplified Placement Order

③ HBMs & XPUs Placement

Length

Area

< Detail procedure of HBM placement algorithm >

H1 H2 H3 X1

1 2 3

4 5 6

b1

a1

b2

a2

b3

a3

b4

a4

Completed placement

𝑖1 = ℎ1, ℎ3, 16𝐺𝑏𝑝𝑠
𝑖2 = ℎ1, 𝑥1, 48𝐺𝑏𝑝𝑠
𝑖3 = ℎ2, ℎ3, 16𝐺𝑏𝑝𝑠
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Stage 2: Conditional Diffusion Model-based HBM & XPU 
Interconnection Optimization 

26

3

Condition

Random

Noise

Graph 

Embedding

HBM & XPU 

Placement 

(*from stage 1)

xT

…

…

x0

High quality

Original Data

xt

Forward Diffusion: Noising

xt-1

…

…

Reverse Diffusion: Denoising Noise

Diffusion model 

Learning Procedure

< Conditional diffusion model-based HBM interconnection optimization >

cDiffusion model

{data rate, length} 

{HBMs & XPUs} 

Optimized

Interconnection
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Definition of HBM6 Placement and Interconnection Problem

26

4

Interconnections Data rate     

GPU – GPU
48 Gbps

GPU – HBM
16 Gbps

▪ # of I / O: 4096

▪ Bandwidth: 8 TB/s

▪ Remote HBM BW: 48 TB/s

▪ # of I / O: 4096

▪ Bandwidth: 24 TB / s

▪ Inter-GPU BW: 48 TB/s

Inter-GPU BW ≥ Remote HBM BW

(Requirement of latency reduction)

HBM 1 HBM 2 HBM 3 HBM 4

HBM 5 HBM 6 HBM 7 HBM 8

GPU 1

GPU 4

GPU 2

GPU 3

< Problem instance: HBMs & XPUs / interconnections >

▪ A problem is defined to apply the proposed method to an AI specialized HBM6 package. 

(comprising 4 GPUs and 8 HBM6).

▪ The HBM6 and GPU sizes for placement are determined with relative dimensions.

▪ Data rates and the number of I/Os for each interconnection are chosen to satisfy conditions 

aimed at reducing GPU compute latency.
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11.2 mm

1
2
. 
m

m

①

②

④

③

⑤

⑥

⑦

⑧

⑨ ⑩

⑪

⑫

Net 

ID
Interconnections

Data rate 

[Gbps]

Length 

[mm]
Cost

① GPU1 – GPU2 48 Gbps 5.0 mm 

171.376

(Total Area

134.4

Total Length

36.976)

② GPU1 – GPU3 48 Gbps 3.624 mm

③ GPU2 – GPU4 48 Gbps 2.884 mm

④ GPU3 – GPU4 48 Gbps 3.624 mm

⑤ GPU1 – HBM1 16 Gbps 2.432 mm

⑥ GPU1 – HBM2 16 Gbps 3.124 mm

⑦ GPU2 – HBM3 16 Gbps 2.432 mm

⑧ GPU2 – HBM4 16 Gbps 3.124 mm

⑨ GPU3 – HBM5 16 Gbps 2.683 mm

⑩ GPU3 – HBM6 16 Gbps 2.683 mm

⑪ GPU4 – HBM7 16 Gbps 2.683 mm

⑫ GPU4 – HBM8 16 Gbps 2.683 mm

Optimized HBM Placement Results using Proposed HPA
(Stage 1)

< Optimized HBMs & GPUs placement results >

▪ HPA optimizes HBM and XPU placement by jointly minimizing total wire length and layout area.

✓ Total Cost: 171.376 – Total layout area: 134.4 / Total wire length: 36.976 

▪ Each GPU is placed in direct adjacency to an HBM module.

▪ The placed blocks do not overlap, and all connected blocks are positioned adjacently.

▪ The completed HBM placement is used as a condition for the stage 2 diffusion model.

GPU4

GPU1

GPU2

GPU3



TeraByte Interconnection and Package LaboratoryTERA
TeraByte Interconnection and Package Laboratory

26

6

Length

[mm] 

W

[um] 

S

[um]

H

[um]

T

[um]
C1 C-1

Tx_R

[Ω]

Tx_

Cap 

[pF]

Rx_

Cap

[pF]

ADC
P1

[GHz]

P2

[GHz]

P3

[GHz]

P4

[GHz]

Z1

[GHz]

G1 & G2

32 Gbps
5.0 1.81 2.85 1.16 1.49 0.15 0.09 24.83 145.86 177.12 0.49 0.71 9.85 26.27 26.75 0.53

G1 & G3

32 Gbps
3.624 1.55 2.92 1.03 1.25 0.22 0.06 27.82 123.2 144.49 0.54 0.73 10.32 31.3 29.27 0.45

G2 & G4

32 Gbps
2.884 1.11 2.98 1.1 1.22 0.11 0.09 26.46 145.74 124.99 0.51 0.76 10.66 29.97 31.45 0.5

C3 & G4

32 Gbps
3.624 1.55 2.74 1.0 1.27 0.07 0.1 25.59 137.39 119.21 0.55 0.68 11.39 26.16 32.35 0.47

G1 & H1

24 Gbps
2.432 1.87 2.58 1.2 1.19 0.13 0.07 24.44 132.21 108.79 0.39 0.75 9.22 29.2 30.14 0.49

G1 & H2

24 Gbps
3.124 2.08 2.74 1.44 1.07 0.13 0.06 21.08 146.43 138.7 0.27 0.78 10.55 28.31 28.87 0.5

G2 & H3

24 Gbps
2.432 1.75 2.58 1.18 1.35 0.05 0.11 23.35 124.49 175.19 0.54 0.66 7.94 27.11 28.11 0.5

G2 & H4

24 Gbps
3.124 1.69 2.81 1.07 1.67 0.16 0.08 26.22 132.19 104.02 0.32 0.77 10.62 28.45 29.72 0.46

G3 & H5

24 Gbps
2.683 1.37 2.44 1.14 1.55 0.12 0.04 24.96 162.34 181.2 0.5 0.60 9.74 25.68 31.8 0.5

G3 & H6

24 Gbps
2.683 2.25 2.34 1.21 1.26 0.06 0.12 26.62 181.25 118.92 0.52 0.7 9.19 32 31.91 0.46

G4 & H7

24 Gbps
2.683 2.45 2.31 1.16 1.96 0.12 0.07 27.1 110.37 142.33 0.49 0.64 9.85 28.47 29.3 0.5

G4 & H8

24 Gbps
2.683 2.26 2.27 1.0 1.51 0.09 0.09 24.14 120.61 133.08 0.46 0.69 8.67 26.64 24.32 0.5

Optimized HBM Interconnection Results using Proposed 
Conditional Diffusion Model (Stage 1-based Stage 2)

< Optimized HBM6 interconnection results >
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GPU1 – GPU2  GPU1 – GPU3 GPU2 – GPU4 GPU3 – GPU4

GPU1 – HBM1  GPU1 – HBM2 GPU2 – HBM3 GPU2 – HBM4

GPU3 – HBM5  GPU3 – HBM6 GPU4 – HBM7 GPU4 – HBM8
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0 8020 40 60

[psec]

0
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0
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100

300
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163 mV

30.208 psec

140 mV

8020 40 608020 40 600

[psec]

0

200

[mV]

100

300

8020 40 60

30.625 psec

157 mV

31.042 psec

177 mV

0

[psec]

0

200

[mV]

100

300

8020 40 60 0

[psec]

0

200

[mV]

100

300

8020 40 60 0
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0
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100
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8020 40 60 0
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0

200
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100

300

8020 40 60
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133 mV
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141 mV
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145 mV

32.292 psec

146 mV

< Spec-compliant all eye diagram results >

Spec-in Spec-in Spec-in Spec-in

Spec-in Spec-in Spec-in Spec-in

Spec-in Spec-in Spec-in Spec-in

Eye Diagram Verification of the Solution
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Power Noise Impact on Eye Diagram in Hierarchical Power 
Distribution Network (PDN) Configurations of HBM6

270

< Eye diagram distortion at Rx due to SSN of HBM I/O interface >

PCB/PKG
Hybrid

Interposer Chip

[Hierarchical PDN structure]

VDD

VDD

VSS

Power Noise

VRM

▪ Power noise induced by hierarchical power distribution network (PDN) causes 

simultaneous switching noise (SSN) which degrades eye diagram and leads to signal 

distortion.

▪ Due to the large number of core and I/O drivers in HBM, the importance of signal 

integrity/power integrity (SI/PI) co-simulation considering SSN is ever-increasing. 

▪ By utilizing eye diagram simulations, we can effectively observe and understand these 

complex interactions and their impact on system performance.

Eye Diagram Distortion

Tx Rx
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Large-scale Glass Interposer

Package Substrate

…

…

Silicon Interposer Tile Silicon Interposer Tile

< Silicon-Glass Hybrid Interposer for HBM6-GPU Module >

Generative AI-based Eye Diagram Estimation Agent

271

MeasurementSimulation

Conventional Design Analysis Method

Image Generation (Estimation)

Design Analysis with Generative AI Agent

AI AgentDesign

time-consuming time-efficient
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AI Agent for HBM Design in TeraLab
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Ball Map

Routing

EQ

Decap

Placement

Optimization Agent

Si interposer

GPUHBM

HBM Design

AI Agent

Simulation Agent

Human 

user

Large language 

model (LLM)
Domain

knowledge RAG
Explanation &

Reasoning

Question

Human Interactive Agent

CoT

G

D Eye diagram

estimation

RL / IL
Q K V

Attention 

PDN impedance 

estimation

< AI agent for HBM Design in TERALab>
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AI Agent for HBM Design in TeraLab
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Ball Map

Routing

EQ

Decap

Placement

Optimization Agent

Si interposer

GPUHBM

HBM Design

AI Agent

Simulation Agent

Human 

user

Large language 

model (LLM)
Domain

knowledge RAG
Explanation &

Reasoning

Question

Human Interactive Agent

CoT

G

D Eye diagram

estimation

RL / IL
Q K V

Attention 

PDN impedance 

estimation

< AI agent for HBM Design in TERALab>
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Proposal of Adaptive Gramian-Angular-Field Segmentation Integration Based 

Generative Adversarial Network (AGSI-GAN) for Eye Diagram Estimation

③ Fast and accurate eye diagram estimation 

with generative adversarial learning

G

D

Discriminator

Generator

Estimated

Eye Diagram

Ground Truth

AGSI

① I/O channel design 

with various design parameters

Tx Rx
Hierarchical 

PDN

② Adaptive Gramian-Angular-Field

Segmentation Integration (AGSI)

GASF

Segmentation Integration

1
. 
S

B
R

2
. 
F

E
X

T

3
. 
S

S
N

Module Configuration
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Designed components of HBM6 I/O Interface

< Designed HBM I/O interface >

VSS

VDDQL

DQout

x1 x2 x26 x27

x1 x2 x26 x27

…

…

[Tx I/O driver (N-over-N)]

PCB/PKG Interposer Chip

VDDQL

[Hierarchical PDN]

[Interposer channels]

Power/Ground

Power/Ground

Signal

▪ Hierarchical PDN incorporates PCB, package, interposer, and chip layers.

▪ N-over-N driver for transmitter (Tx) I/Os, and stripline memory channels for DQ signaling 

are designed.
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Estimation Performance of the Proposed Method on the Test Set

The number of 

test dataset
120

Method Avg. time Time efficiency 

Full-Transient 

Simulation
216.8 s -

AGSI-GAN (proposed) 24.7 s 88.6 %

Mean absolute 

percentage error (MAPE)

Measured 

Eye Diagram Metrics

EW 0.84 %

EH 1.08 %

OS 3.14 %

US 4.19 %

𝐴𝐸𝑂 1.24 %

𝐴𝑂𝑆 2.36 %

𝐴𝑈𝑆 2.93 %

Overshoot 

(OS)

Undershoot 

(US)

Eye-height 

(EH)

Eye-width (EW)

Overshoot Area 

(AOS)

Undershoot Area 

(AUS)

Eye-opening 

Area (AEO)

< Conventional point-to-point metrics >

< Cumulative metrics for further 

comprehensive evaluation >



TERA
TeraByte Interconnection and Package Laboratory

TeraByte Interconnection and Package Laboratory 277

Estimation Results on Test Samples

Test Sample 1 (T1) Test Sample 2 (T2) Test Sample 3 (T3) Test Sample 4 (T4) Test Sample 5 (T5)
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Method Factor
Test Sample

T1 T2 T3 T4 T5

Full-Transient Sim.
IQM SSIM - - - - -

Time t [s] 197.6 235.7 211.4 213.0 212.9

AGSI-GAN

(Proposed)

IQM SSIM 0.97 0.95 0.93 0.94 0.93

Time t [s] 25.1 24.8 24.4 24.8 24.2
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Accelerated Design Optimization with the Proposed Framework

< Flowchart of high-speed channel design 

optimization with the AGSI-GAN framework >

< Objective function for the eye diagram (𝑂eye) 

considering design trade-offs >

▪ By automating the estimation process with AGSI-GAN, design revision iterations and 

computing resources can be reduced. 

▪ To address limitation of point-to-point metrics based design evaluation, we propose an 

objective function for the eye diagram (𝑂eye) that maximizes the 𝐴EO while minimizing 𝐴OS
and 𝐴US, considering power noise sensitivity.

Fast design 

optimization

Design high-speed I/Os

Evaluate design

with 𝑂eye

Define design target

Optimized design

Estimate eye diagram

with AGSI-GAN

Iterative 

design revisions

𝑂eye = 𝑤EO ∙ 𝐴EO − 𝑤OS ∙ 𝐴OS − 𝑤US ∙ 𝐴US

Overshoot Area 

(AOS)

Undershoot Area 

(AUS)

Eye-opening 

Area (AEO)

Objective Function
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Accelerated Optimization Result using the Genetic Algorithm (GA)

< Objective function values over time during the optimization process >

▪ Within the given time budget, full-transient simulation was only able to complete 9 

generations, whereas AGSI-GAN allowed for 81 generations. 

▪ Despite GA requiring many iterations, AGSI-GAN significantly accelerates the iterative 

refinement process by rapidly estimating the eye diagrams required for objective evaluation. 

Method Target 𝑂𝑒𝑦𝑒 Evaluation Tool Time-to-Target 

Genetic Algorithm 3800
Full-Trans. Sim 8672 s

AGSI-GAN 732 s

(𝑤EO = 0.5, 𝑤OS = 0.2, 𝑤US = 0.3)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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Thank You!
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HBM Roadmap Ver 1.7 Workshop Agenda [3/3]

281

HBM 

세대
순번 Time Contents Presenter

HBM7/8

17 15:00 ~ 15:15 HBM-HBF with Storage Network Architecture 안현준

18 15:15 ~ 15:30 NMC-HBM with HBF for Large-Scale AI Inference 이현이

19 15:30 ~ 15:45 HBM7 Architecture Integrated with High-Capacity 3D Stacked LPDDR 최인영

20 15:45 ~ 16:00 Embedded Cooling Structure for HBM7 Architecture 손기영

21 16:00 ~ 16:15
3D Memory Expansion Architecture for HBM8 

with Double-Sided Interposer and HBM-HBF-LPDDR Integration
양채민

22 16:15 ~ 16:25
AI Design Agent for 3D Placement and Routing Optimization for HBM8 using 

Reinforcement Learning considering Thermal-Signal Integrity
엄현서

23 16:25 ~ 16:35
LLM-aided Interactive Reinforcement Learning (IRL)

with Switch Transformer for PSIJ Reduction in HBM7
배재근

24 16:35 ~ 16:45
LLM-based HBM7 Design Agent using Interactive Reinforcement Learning (IRL)

for Decoupling Capacitor Placement
김근우

16:45 ~ 17:00 Closing 김정호교수
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HBM-HBF with Storage Network Architecture

Hyunjun An

Advising Professor : Prof. Joungho Kim

TeraByte Interconnection and Package Laboratory

School of Electrical Engineering

KAIST
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Key Features of HBM-HBF-Storage Network Architecture – [1/2]

28

3

GPU

HBM

HBM

HBM

HBM

HBM

HBM

HBF

HBF

HBF

HBF

HBF

HBF

HBM HBFHBMHBF

Memory 

Network 

Switch

Memory 

Network 

switch

CXL/PCIe HBM-HBF 

(H2F Link)

< HBM-HBF-Storage Network Architecture : Top View >  

Total Memory Capacity

➢ 17.6 TB

BW (GPU-HBM)

➢ Total 192 TB/s

BW (HBM-HBF)

24 TB/s12 TB/s2 TB/s

0.2 TB 2 TB

BW (HBF-Others)

➢ Total 96 TB/s

➢ Total 16 TB/s

DIMMs

SSDs

HBFs

DIMMs

SSDs

HBFs
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Key Features of HBM-HBF-Storage Network Architecture – [2/2]

28

4

Interposer Channel

PHY

GPU

PHY PHY PHY PHY Base DieMC

⋮

HBM

0.2 TB

PHY

[GPU-HBM]

✓Parallel interface

✓ 8,192 x 24 Gbps = 24 TB/s

[HBM-HBF (H2F Link)]

✓Parallel interface

✓ 4,096 x 24 Gbps = 12 TB/s

[HBF Link]

✓Serial interface (PCIe 7.0, CXL 4.0)

✓ 128 Gbps x 128 lanes 

➢ 2 TB/s
*Assume PCIe 7.0 : 128 Gbps

*Current  PCIe 6.0 : 64 Gbps

Memory 

Network Switch

Other PKG

PHY

CXL, PCIe, etc.

<  HBM-HBF-Storage Network Architecture: Side view >  

➢ BW = 24 TB/s ➢ BW = 12 TB/s
➢ BW = 2 TB/s

HBF

2 TB
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HBM 7 HBF

Architecture

(Side view)

Stack numbers 24 16

Memory Capacity per die 64 Gb (=8 GB) 512 Gb (=64 GB)

Total Memory Capacity 0.2 TB 2 TB

I/O numbers 8,192 4,096

Signal TSV numbers 32,768 16,384

Diameter / Pitch of TSV dTSV=5 µm, pTSV=20 µm

TSV density (1mm/20µm) x (1mm/20µm) = 2.5K/mm2

Signal TSV Area
8 mm x 2 mm = 16 mm2

(up to 40K TSVs)

8 mm x 1 mm = 8 mm2

(up to 20K TSVs)

Datarate 24 Gbps 24 Gbps

Bandwidth (GPU-HBM) 24 TB/s 12 TB/s

Comparison Between HBM and HBF

285
< Comparison between HBM and HBF >
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Architecture of High Bandwidth Flash (HBF)

< High Bandwidth Flash (HBF) Architecture for Memory Intensive LLM Inference >

Control

Gate

Floating 

Gate
Channel

NAND memory Cell

HBF NAND Layer x16

Peripheral Circuit (R/W, CTRL, PWR)

128 Layer NAND

HBF 

TSV

BL

WL 128 layer

Base Die
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P
H

Y

✓ 8K I/O, 24 Gbps = 24 TB/s

Base Die Design of HBM-HBF-Storage Network Architecture

28

7
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✓ 12 TB/s

HBF Base die 

Interposer Other PKG

P
H

Y

P
H

Y

External 

Memory 

Network

Switch

✓HBF Link (2 TB/s) 

✓CXL/PCIe based serial interface

✓Communication with CPU, HBF, etc.

< Base die design of HBM-HBF-Storage Network Architecture >  

HBM (base die)
DIMMs

SSDs

HBFs

(Test blocks)
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F
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HBM-GPU 

Communication
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Interposer Channel

PHY

GPU

PHY PHY PHY PHY Base DieMC

≈HBM

0.2 TB

HBF

2 TB
≈

Data Flow Path for GPU-HBM-HBF Architecture

28

8

Case 1) Data is in HBM

① GPU → ② HBM (read request issued)→ ③ GPU-side Memory Controller (decodes & schedules)

→ ④ HBM DRAM access (local) → ⑤ Return data → ⑥ GPU via PHY (24 TB/s)

Case 2) Data is in HBF

① GPU → ② HBM (read request issued)→ ③ HBM-internal Memory Controller (detects HBF access)

→ ④ HBF Flash access (through H2F link @ 12 TB/s) → ⑤ Data returned to HBM buffer

→ ⑥ GPU via PHY (24 TB/s)

Case 1) Data is in HBM Case 2) Data is in HBF

24 TB/s 12 TB/s

< Data flow path for GPU-HBM-HBF Architecture >
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HBM-Only HBM-HBF Architecture
HBM-HBF-Storage Network 

Architecture

Architecture

(Top view)

Total Memory Capacity
0.2 TB x 8 EA

= 1.6 TB

1.6TB(HBM) + 16TB(HBF)

= 17.6 TB
17.6 TB + alpha (~100 TB)

Total 

Bandwidth

GPU-HBM
✓ 24 TB/s x 8

✓BW = 192 TB/s

HBM-HBF NA
✓ 12 TB/s x 8

✓BW = 96 TB/s

HBF-Storage NA NA
✓ 2 TB/s x 8

✓BW = 16 TB/s

Comparison of HBF-based Memory Architectures

289

< Comparison of HBF-based memory Architectures >
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Thank You!
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with High-Bandwidth-Flash(HBF)

for Large Scale AI Inference
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I. Introduction : Why Memory Expansion needs and can be solved with Flash? 

II. Proposal of New Memory Expansion Scheme in Cascaded Hetero-Memory 

Architecture 

III. Advantages of the NMC-HBM with HBF (High Bandwidth Flash) Architecture

Contents
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Multi-Agent LWM(Large World Models) Toward AGI

293

▪ LWM(Large World Models) like Google’s Genie 2 are designed to understand the real world. 

▪ Jensen Huang @CES2025 “Perception AI → Generative AI → Agentic AI → Physical AI” 

▪ Agentic AI drives rapid post-training scaling, requiring multiple models for larger inference capacity.

➔Beyond bandwidth, memory scalability is essential for AGI with Agentic 

AI.

< Model Size Trends by GPT Ver. >

GPT-1

117 M

GPT-2

762 M

GPT-3

175 B

GPT-4

1.8 T

Future

(GPT-5) 

3T~10T(MoE, Mixture of Expert)

LLM
More

complex

LWM

Environment
Agent 1

Agent 2

Agent 3

Single Modality Multi Modality

< LLM Toward LWM(Large World Model)

>

Many Agents

(1000x/10yr)

Many Experts
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Flash Bandwidth isn’t so low in terms of sequential read

29

4

Cell Periphery

3D NAND

① ②

<3D-NAND Chip Architecture> <NAND Bandwidth : Core vs. IO vs. I/F Bound>

▪ NVMe SSDs bandwidth consists of core-bound, I/O-bound components and PCIe interface

▪ Ex) Core-bound = 16 channels × 1 way × 16KB/page × 4 planes / 20μs (51 GB/s, SLC)

▪ Ex) I/O bound = 16 channel x 3.6 Gb/s x #IO (8) x 80% (46 GB/s)

▪ PCIe spec. = Interface becomes the bottleneck (4Lane-based Gen5: 14 GB/s, Gen6: 28 GB/s)

➔ Sequential Read mode in SSD NVMe offers BW potential far beyond 

PCIe I/F limits

BW 

[GB/s]

#Chip

Real performance

PCle limit

③ PCIe Interface Max

② I/O bound

cf. HBF : 16Plane, IO 1024/16Hi 

▪ Core-bound = 16 channel × 1way × 16KB/page × 16 planes / 5μs (800 GB/s, SLC ZNAND 수준) > 500GB/s @ GPT4 based

▪ I/O bound = 16 channel x 12 Gb/s x #IO/ch (1024 = 8Byte/ch) x 70% (1536 GB/s) → (core가 ½ 배 shortage)

▪ PCIe spec. = Interface becomes the bottleneck (4Lane-based Gen5: 14 GB/s, Gen6: 28 GB/s → Gen6 16Lane : 112 GB/s)
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Industry Sensing) HBF from SANDISK

29

5※ HBF : IO #1024/16Hi/8bit = 8Byte/chip 

1) Match HBM Bandwidth
: Deliever 16x Capacity at Similar Cost

2) Enabled by BiCS Technology
: With CBA Wafer Bonding(Cmos directly Bonded to Array)

3) Proprietary Stacking Technology
: Ultra-Low Die Warpage for 16H Stacking

4) Architecture Developed Over the Past 

Year
: With Inputs From Major AI Players

[ High Bandwidth Flash(HBF) Augmenting HBM Memory 

with NAND Flash for AI Inference 

Workloads ]

256Gb/die x 16Hi/stack x 8HBF = 4TB

20x (4096/192)

512GB24GB

Ref : SANDISK
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I. Introduction : Why Memory Expansion needs and can be solved with Flash? 

II. Proposal of New Memory Expansion Scheme in Cascaded Hetero-Memory 

Architecture 

III. Advantages of the NMC-HBM with HBF (High Bandwidth Flash) Architecture
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A Proposed Cascaded Hetero-Memory PKG Architecture 
using High-Bandwidth-Flash(HBF)

29

7

▪ Glass-Interposer : allows Stack-up for global far track & Size-up for HBF area, compared to SI-Interposer

▪ Weight Streaming to HBM-NMC : pipelined via ‘Tensor Buffer’(or directly in future) located at an allocated address

within the HBM itself

▪ HBF/HBM Base-die : 1) Common CTRL : Flash Cell Reliability-related CTRL

(ex. FTL, DRAM/SRAM Buffer, NAND Scheduler, ECC Engine, Wear-leveling/GC unit, PCIe Host I/F)

2) HBF_M Ctrl : layer transition-aware prefetch scheduling (ex. CMD Parser & Queue)

3) Dual-protocol router(D-router) for both Custom D2D & PCIe

& Conditional 2:1 Mux (only if. Full-Address sharing access type rather than Allocated-Address one)

▪ On-package : Enables beyond SSD PCIe Gen limit by providing large chunks

of sequential weight data per layer for NMC via non-packetized custom D2D protocol

[ A proposed Cascaded Hetero-Memory Architecture : HBF stores Pre-trained fixed data (Read intensive), 

HBM stores Intermediate result data (R/W balanced) ]

NMC
Input @Layer_N

② PCIe Protocol (Direct Storage)

Tensor Buffer_O/E

Weight @Layer_N

D-

Router

HBF Core-Die

HBF Core-Die

HBF Core-Die

HBF Core-Die(1
6

H
i/s

ta
c
k
)

PCIe Interconnect of BaM

GPU

Weight 

Streaming 
@Layer_N+1Common 

CTRL

B

A

D

IO Buffer Serial Queues

to each Thread

PHY Engine PHY CTRLPHYDPHY1/2 PHY

∝ #Lane

Glass-Interposer

Local Track

HBF_M 

CTRL

① Custom D2D Protocol

512GB @16Hi HBF , 24/36GB @8/12Hi HBM3e, GPT4 FP16 : 3.6TB

HBM(ex. 128GB/4full-stk)HBF(ex. 2TB/4full-stk)

C’
C

A

B

C

ex.) Top View

(Seq. Large Data, ex. >16KB xPlane)

(Ran. Small Data, ex. <4KB)
Global Track

(1.0TB/s) (4.0TB/s)

(BW-Aware mem)
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HBF can achieve zero latency by pipelining I/O and NMC computation 
via a pre-allocated tensor buffer in HBM inner-address

29

8

Tensor Buffer Even 

(@layer 2n)

HBM NMC

Tensor Buffer Odd 

(@layer 2n+1)

GPU

Stored in HBF

Layer 0

Weight

(6.4GB)

Layer 1

Weight

(6.4GB)

Layer 2

Weight

(6.4GB)

Layer 127

Weight

(6.4GB)

[Burst-manner Access : layer by layer] 

Stored in HBM Computed in HBM

▪ Weight streaming for layer1 while near-memory-computing for layer0 with prefetched weight beforehand

▪ DMA transfer between heterogenous memory within a package without GPU

▪ Merit-1) Flash latency can be hidden, -2) Memory expansion can be feasible

▪ How) HBF : IO #1024/16H  = 8 byte/die (x8 #IO 比 Conv) → Core bound ↑ w/ fast-sensing & more planes

“On-Package Compute-I/O Parallelism”

Layer 0

6.4GB

Layer 1

6.4GB

Layer 2

6.4GB

Layer 3

6.4GB

Layer 4

6.4GB

Layer 5

6.4GB

tCompute

@NMC
(> tWeightStream)

S
e
q
u
e
n
ti
a
l

819GB

= 0.5 TB/s @現 GPT4

※ (Base : GPU H200 FP16, Tensor core 100% moved to NMC-HBM SM Core)  

GPT4 Compute per Layer (26 TFLOPs) / H200 Tensor Core Max (1979 TFLOPs) = Min layer latency (13.1ms)

6.4GB/13.1ms 
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HBM Direct Storage with HBF : Top view

299

HBM

NMC

HBM

NMC

HBF

HBF

HBM

NMC

HBM

NMC

HBF

HBF

X-size

①

▪ Application-①. Large ‘Weight per layer’ in Multi-Model/Multi-Agent Inference

: Larger BW requires larger local cache capacity to avoid frequent remote fetches (prefetch efficiency ↑)

▪ Application-②. Low Latency ‘Vector Index’ for massive DB Indexing such as RAG during Inference

: Using ‘Local Flash media’ as a GPU memory tier helps fully utilize GPU compute performance

▪ Future HBF : Can be even more than division PHY1/2 for Network Storage, HBF Self Link +etc 

Weight Per layer

Per Model/Agent

GPU

IO Pitch

GPU HBM

HBF Interposer

Vector Index ②

256Gb/1H ↑

“HBM’s BW For Active

model/agent among Total 

models/agents”

“HBF’s GB For Total

models/agents”

P1 P2

HBM

NMC

HBM

NMC

HBF

HBF

HBM

NMC

HBM

NMC

HBF

HBF

GPU

(`26 Rubin : 1GPU/4HBM)
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I. Introduction : Why Memory Expansion needs and can be solved with Flash? 

II. Proposal of New Memory Expansion Scheme in Cascaded Hetero-Memory 

Architecture 

III. Advantages of the NMC-HBM with HBF (High Bandwidth Flash) Architecture
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Non-Volatile Memory Flash : Less Network Traffic 

301

Without HBF : 

Conventional systems must repeatedly fetch 

model weights or large activation feature maps 

from NVMe SSDs or network-attached storage 

whenever the GPU requires them.

With HBF : 

1)   High Data Hit Ratio via On-Package Flash(HBF) 

2) Network I/O Offloading→ Significant reduction 

in network traffic during inference

3) Improved Prefetch Accuracy(Layer-aware burst) 

4) Enhanced Compute-IO Parallelism→ Improve 

Throughput/latency per token 

5) Higher hit ratio leads to reduced system power 

consumption associated with network access

NIC (remote) PCIe 

Switch

CPU

System 

Memory

NVMe (local)
GPU NMC-HBM

Network Interface Card → remote storage

NIC (remote) PCIe 

Switch

CPU

System 

Memory

NVMe (local)
GPU NMC-HBM

HBF

High Data Traffic

Low Data Traffic

Mid Data Traffic

[On-Package]
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Flash Power Consumption : Better in case of long idle time

302

▪ Chunk-based access to large-scale data improves amortized energy efficiency via 

block-wise I/O.

▪ NAND consumes no standby power for data retention, unlike DRAM.

➔ NAND scales better for on-demand AI Inference with zero refresh 

overhead.

DRAM FLASH

Active read 

energy
5 pJ/b

*DDR4 6.4GB/s 64bit
25 pJ/b

Self refresh 

current

148 mA 
*DDR4 32Gb

(163mW)
0 mA☺

< Chip power efficiency : DRAM vs. FLASH>

DRAM = DDR4 @6.4GB/s, 64bit

NAND = Toggle DDR @ 2.4 GB/s, 8bit

Energy 

Consump. 

[Wh]

time [s]tActive tIdle

T(same)

x GB/s(target 

same)

x pJ/B

V x I x T

+Offset 

: PCh_network

(If. Hit Fails) 

NAND ☺

<DRAM needs Refresh>

< System power in DRAM vs. FLASH >
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Thank you!
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Limitations of the Previous HBM System Architectures Integrated 
with Wire-Bonded LPDDR [HBM3 & HBM4]

305

▪ HBM3 systems adopted NVLink-C2C instead of PCIe to achieve higher off-package bandwidth.

▪ Despite this, NVLink-based access still suffers from long physical distance and latency overhead with 

insufficient bandwidth for memory-bound workload.

▪ To address this, in HBM4 systems, LPDDR was integrated on silicon interposer, connected to HBM 

base die integrated with memory controller.

▪ However, LPDDR still uses wire bonding, which limits I/O density and achievable bandwidth.

▪ Long and parasitic wire paths degrade signal integrity, making them suboptimal for high-speed 

memory access.

< CPU–GPU Architecture with HBM3 > < GPU - HBM4 Architecture with Wire-Bonded LPDDR >

GPU
HBM Base Die

HBM Base Die

LPDDRLPDDR

LPDDRLPDDR

HBM

LPDDR

LPDDR

HBM

LPDDR

LPDDR

HBM Base Die

CPU

(Unused)

MC

MC

GPU

HBM

HBM

LPDDR

CPU

LPDDR

NVLink-C2C

MC

Bandwidth

Limit

: Low-Bandwidth

: High-Bandwidth

Bonding Wire

Spacer

PKG Sub.
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Proposal of HBM7 Architecture Integrated with High-Capacity 

3D-Stacked LPDDR on Glass Interposer

< Proposed HBM7 Architecture Integrated with 3D-Stacked LPDDR on Glass Interposer >

▪ The proposed architecture integrates high-capacity 3D-stacked LPDDR alongside HBM stacks on a 

shared glass interposer .

▪ Each 3D-LPDDR stack is composed of 16 DRAM dies vertically connected through TSVs, enabling 

high-bandwidth and energy-efficient memory access.

▪ Two LPDDR stacks are mounted on a single base die, which interfaces with a customized HBM base 

die that includes integrated Memory Management Logic (MML) for unified memory access.

30
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3D-LPDDR (128GB)

Glass Interposer
1024GB/s3072GB/s

PHY
LPDDR

Base Die

HBM (64GB)

LPDDR TSV

Aggregated 

Bandwidth

GPU

Customized 

HBM Base Die

PHY PHYMMLCoreCore PHY

2048GB/s
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High-Capacity GPU Memory System with 3D-Stacked LPDDR in 
HBM7-based Architecture

< Configuration Overview the Proposed HBM7 integrated with 3D-Stacked LPDDR >

▪ 8 memory modules are symmetrically integrated around the GPU on a glass interposer.

▪ 3D-stacked LPDDR modules are placed adjacent to the HBM, minimizing latency and reducing 

interconnect energy.

▪ The GPU-HBM interface supports up to 3,072GB/s bandwidth, which is the combined bandwidth from 

HBM and LPDDR aggregated through the MML, enabling data transfer to GPU without bottlenecks.

HBM-GPU Bandwidth = 3,072GB/s

HBM-LPDDR 

Bandwidth

= 1,024GB/s

✓ Total LPDDR

Memory Capacity  

= 128GB × 8 = 1,024GB

✓ Total HBM

Memory Capacity

= 64GB × 8 = 512GB

✓ Total Memory Capacity  

= 512GB+1,024GB = 1,536GB

30
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HBM

HBM

HBM

HBM

HBM

HBM

HBM

HBM

NV-HBI (10TB/s)GPU

Glass Interposer
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Memory Management Logic-based Unified Memory Access in the 
Proposed Architecture
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Ref) Nilandrish, Chatterjee, et al., "Combined on-package and off-package memory system.” US 20230393788 A1, Dec.7, 2023.

▪ When GPU issues a memory access request, MML references the page table to translate the address 

and determine the appropriate memory interface.

▪ MML in the customized HBM base die aggregates memory capacity and bandwidth from both HBM 

and LPDDR stacks and provides unified memory access to GPU. 

▪ This transparent abstraction relieves GPU from managing memory mapping and management 

operations, enabling a more scalable, HBM-centric memory architecture.

Memory Management

Logic (MML)

GPU

HBM

Controller

LPDDR

Controller

HBM LPDDR

Page Table

Glass Interposer

PHY PHYMML PHY

GPU

CoreCore PHY

< Memory Access Flow with Customized HBM Base Die integrated with MML >
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Advantages of TSV-based 3D LPDDR Stacking based over 
Conventional Wire Bonding
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< Comparison of TSV and Wire Bonding Interconnection Methods in 3D-Stacked LPDDR >

▪ In the proposed 3D-LPDDR architecture, TSVs are used to vertically connect multiple DRAM dies.

▪ Compared to wire bonding, TSVs offer several key advantages:

✓ Shorter interconnect length reduces inductance and energy per bit, improving timing margins.

✓ Enhanced signal integrity with lower delay, crosstalk, impedance mismatch.

✓ Reduced package height and form factor by eliminating bonding loops and spacers.

✓ Higher I/O density within a smaller footprint, enabling greater bandwidth scalability.

▪ These advantages make TSVs the preferred interconnect choice for high-performance, energy-

efficient 3D-stacked LPDDR systems.

Bonding

Wire
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Overall System Hierarchy of the Propㅐsed HBM7 Architecture 
Integrated with 3D-Stacked LPDDR

< Overall System Block Diagrams of Conventional (HBM3) and Proposed Architecture > 
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Key Advantages of the Proposed HBM7 Architecture Integrated 

with 3D-Stacked LPDDR 

< Key Advantages of the Proposed Architecture >
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▪ Conventional HBM3/HBM4-based memory systems integrated with wire-bonded LPDDR 

suffer from critical limitations, including long physical distance, limited bandwidth, and 

high access latency.

▪ To address these bottlenecks, a HBM7-based architecture was proposed, integrating 

high-capacity 3D-stacked LPDDR alongside GPU-HBM modules on a shared glass 

interposer. 

▪ The proposed system employs TSV-based vertical stacking for LPDDR and connects it 

directly to a customized HBM base die, which incorporates memory management logic 

for unified access control.

▪ The proposed architecture enables scalable memory capacity and bandwidth with 

improved energy efficiency, making it highly suitable for memory-bound workloads such 

as large language model inference.
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Thermally Vulnerable Characteristics of HBM

▪ HBM has thermally vulnerable characteristics due to silicon interposer and 3D structure.

▪ HBM is thermally vulnerable because it is located close to GPU, which consumes a lot of power, on 

silicon interposer.

▪ Furthermore, each HBM die is connected by underfill and microbumps, therefore HBM has low 

vertical heat transferability.

31

5

< Thermally vulnerable characteristics of HBM >
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Dominant Factors of Thermal Issues in Next-generation HBM Module

▪ Dominant factor of thermal issues in previous HBM is thermal coupling from GPU to HBM.

▪ Especially, in the case of HBM7, power consumption per each DRAM die cannot be ignored due to the 

increased data rate.

▪ Moreover, adapting additional function on HBM and advanced interposer generates additional power 

consumption.

31
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< Dominant factors of thermal issues in next-generation HBM module >
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Thermal Issues Arising from Enhanced Computing Density with 
Multi-GPU-HBM based AI Supercomputer 

▪ Integrate each GPU-HBM closely for increase computing density, it increases the thermal coupling 

between each GPU-HBM which worsens thermal reliability of compute module.

▪ As increasing the number of compute nodes within AI supercomputer to increase computing density, 

it lowering the cooling performance of conventional rack-level cooling.

< Thermal issues from compact design of  

multi-GPU-HBM compute module >

< Thermal issues from increasing number of

compute tray in rack of AI supercomputer >
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Necessity of Powerful and Uniform Cooling System for Multi-GPU-HBM 
based Computing Modules

< Temperature-dependent electrical issues on multi-GPU-HBM compute module >

▪ For computing performance and signal integrity, multi-GPU-HBM compute module requires powerful 

and uniform cooling.

4
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Heat Sink Development with Increased Power Consumption

▪ As power consumption of system has increased, heat sink developed for high cooling performance.

▪ From HBM7, it requires embedded cooling structure (ECS) to guarantee its thermal reliability.

< Heat sink development trends with increased power consumption >
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Thermal Management Limitation of Conventional Embedded Cooling 
Structure for HBM7

▪ Due to each HBM dies are too thin, low mechanical reliability caused difficult to adapt embedded 

cooling structure (ECS) based on the micropin-fin heat sink (MPFHS) structure directly.

▪ High stacked underfill degrades the vertical directional heat transferability from HBM to flowing fluids.

< Thermal management limitation of conventional embedded cooling structure for HBM7 >

GPU
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Proposed Embedded Cooling Structure with Thermal Transmission Line 
(ECS-TTL) for HBM7
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< Concept of the proposed embedded cooling structure with thermal transmission line for HBM7 >

▪ The proposed ECS-TTL can cool down HBM7 efficiently by circulates fluid through GPU to interposer 

and HBM.

▪ Additionally, the proposed TTL transfer internal heat of each HBM die to fluid flowing inside the 

proposed Fluidic-TSV (F-TSV). 
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TTL and F-TSV based Embedded Cooling Structure for HBM Module 
– Thermal Transmission Line (TTL)

32
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▪ Since each of HBM dies is thin, liquid cooling inside each dies is difficult.

▪ Thermal transmission lines (TTL) are connected to copper coated around F-TSV for increasing 

horizontal directional heat transferability from overall die to fluid.

▪ Therefore, the proposed TTL reduces the temperature standard deviation of HBM.

< Top sectional view of DRAM die with

F-TSV and thermal transmission line >

TSV

Thermal transmission line

Copper

Coolant
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Thermal Path of Stacked Die depending on TTL

▪ Thermal path of stacked die without TTL is shorted when heat transfers to underfill, because of low 

thermal conductivity of underfill.

▪ Therefore, underfill caused heat accumulation in HBM dies.

▪ However, TTL prevents heat accumulation of HBM dies by transfer internal heat of dies horizontally.

32
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Underfill
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< Thermal path of stacked die without TTL > < Thermal path of stacked die with TTL >
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Temperature Distribution Comparisons of HBM Module with Various Cooling 
Conditions
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< Temperature distribution of HBM module with embedded cooling structure >

< Temperature distribution of HBM module with fin and fan cooling structure >
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< Temperature distribution of HBM module without cooling structure >
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TTL Effects on Standard Deviation of HBM Temperature Distribution

▪ Because TTL increases the horizontal directional heat transfer, the standard deviation of each 

HBM die’s temperature distribution decreased.

▪ The improvement of standard deviation of temperature distribution of each die and the total HBM 

is up to 18.5% and 15.5%, respectively.
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<  Temperature standard deviation of HBM >
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HBM 3D CDN with Temperature Distributions of DRAM dies depending 
on TTL

▪ Temperature distribution causes variations of channel characteristics, repeater strength and etc.

▪ Analyzed the skew of HBM 3D CDN along logic die to DRAM top die because differences of standard 

deviation of temperature distributions at DRAM top die is largest. 
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Temperature-dependent Skew and Delay Evaluation of HBM 3D CDN 
depending on TTL

▪ Skew of HBM 3D CDN with TTL decreased as 19.18 % rather than without TTL. 

▪ Furthermore, delay of HBM 3D CDN with TTL is smaller than without TTL, and the difference of delay 

is 15.53 ps.
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< Temperature-dependent transient wave form of HBM 3D CDN with embedded cooling structure >
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Limitations of Previous HBM Generations and Motivation for 3D Expansion

33

0

▪ Horizontal interposer-based connections face routing congestion, limiting bandwidth 

scalability.

▪ HBM-only stacking restricts flexible capacity expansion for heterogeneous memory 

demands.

▪ Thermal and power inefficiencies arise in dense 2.5D packages

→ These issues demand a new vertical memory integration strategy with modular 

capacity and thermal-aware design flexibility.

< Architectural Limit of Conventional 2.5D Interposer-Based GPU-HBM Integration >
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3D Memory Expansion Architecture for HBM8 with Double-Sided 
Interposer [1/3]: GPU-HBM-HBM

33
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< 3D Memory Expansion Architecture for HBM8 with Double-Sided Interposer using HBM >
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▪ This structure expands memory capacity by vertically stacking HBM dies on both 

sides while maintaining bandwidth symmetry.
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3D Memory Expansion Architecture for HBM8 with Double-Sided 
Interposer [2/3]: GPU-HBM-HBF
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< 3D Memory Expansion Architecture for HBM8 with Double-Sided Interposer using HBF >

▪ By replacing one side with HBF, the system significantly increases total memory 

capacity while preserving uniform bandwidth.
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3D Memory Expansion Architecture for HBM8 with Double-Sided 
Interposer [3/3]: GPU-HBM-LPDDR
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< 3D Memory Expansion Architecture for HBM8 with Double-Sided Interposer using LPDDR >

▪ Integrating 3D LPDDR enables cost-effective capacity scaling, offering a balance 

between bandwidth and power efficiency.
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Comparison of Key Features and Memory Capacities in HBM7 & HBM8 
Architectures
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< Comparison of Key Features and Memory Capacities in HBM7 & HBM8 Architectures >
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Bandwidth-Matched 3D Memory Architecture with HBM, HBF, and LPDDR

33
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< Consistent Bandwidth Across Diverse Memory Types via I/O–Datarate Trade-Off >

▪ Flash-based memories like HBF and low-power DRAMs like LPDDR typically 

operate at lower data rates.

▪ However, by increasing the number of I/Os through TSV-based stacking, the system 

can match the bandwidth to 64 TB/s for all memory types.
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Heat Accumulation Issues in 3D Memory Expansion Architecture 

33
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< Thermal Congestion Across 3D Stacked Architectures >
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▪ Lack of bottom-side airflow and direct cooling interface

▪ GPU die acts as a concentrated heat source, generating significant thermal load 

→ Thermal-aware structural design or embedded cooling becomes essential.
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3D Memory Expansion Architecture with Embedded Cooling Structure 
for HBM8 with Double-Sided Interposer [1/3]: GPU-HBM-HBM
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< 3D Memory Expansion Architecture with Embedded Cooling for HBM8 with Double-Sided Interposer using HBM >
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3D Memory Expansion Architecture with Embedded Cooling Structure 
for HBM8 with Double-Sided Interposer [2/3]: GPU-HBM-HBF
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< 3D Memory Expansion Architecture with Embedded Cooling for HBM8 with Double-Sided Interposer using HBF >
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3D Memory Expansion Architecture with Embedded Cooling Structure 
for HBM8 with Double-Sided Interposer [3/3]: GPU-HBM-LPDDR
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< 3D Memory Expansion Architecture with Embedded Cooling for HBM8 with Double-Sided Interposer using LPDDR >
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Embedded Cooling Strategies for 3D Memory Integration with Double-
Sided Interposer

34
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< Micropin-Fin Cooling Structure 

Embedded in Interposer>

InletOutlet

< Liquid-Cooling Heatsink >

▪ Micropin-fin structure is integrated around TSVs, enabling localized liquid flow and 

vertical heat extraction through the interposer.

▪ Liquid-cooled heatsink is attached directly above the heat-intensive compute die.

→ These two cooling layers are independently optimized but thermally coupled, 

enabling reliable heat dissipation from both the GPU and stacked memory dies.
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Conclusion

▪ In the conventional 2.5D GPU-HBM systems, horizontal routing congestion and 

limited stack configuration prevent further bandwidth and capacity scaling.

▪ Therefore, we propose a vertically integrated 3D memory expansion architecture 

using a double-sided interposer.

▪ Our architecture enables modular stacking of HBM, HBF, and LPDDR with 

bandwidth-matching flexibility, and incorporates embedded cooling to ensure 

thermal reliability in dense 3D stacks.

▪ Proposed HBM8 will support both high bandwidth and large memory capacity, 

making it well-suited for future LLM workloads requiring scalable GPU-memory 

systems.
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Signal/Thermal Integrity Problems on Multiple HBM8-XPU Structure

34
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▪ On HBM8, full-3D HBM-XPU architecture with stacked processor is required for higher 

bandwidth and computational power.

▪ Degradation of signal integrity and thermal coupling problem happens on multiple 

HBM-XPU architecture.

< Requirement of Multiple HBMs >
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Proposal of Multiple HBM-XPU Placement and Routing Agent 
Considering Thermal-Signal Integrity Co-Optimization
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▪ The input is a placement map and information of Multiple HBM/XPUs , and the output 

is the revised placement map and routing path. 

▪ The goal is to obtain the optimal design parameters through an Soft-Actor Critic-

based optimization methodology.

< Overview of the proposed Artificial Intelligence Multiple HBM-XPU Placement & Routing 

Design Agent Considering Thermal-Signal Integrity Co-Optimization >

Policy

TD 

Error

Critic 1 Critic 2

Actor

Action a

Upper left corner/

Direction of rotation

Eye Diagram Thermal

Reward r

State s

Canvas

Action Mask

Current Chip

Rx

Tx

Placement

Power

Datarate

Length

Graph

Environment

Input

• HBM/XPU

Information

• Map Information

Output

Improved

token / s

• Placement Map

• Routing Path

XPU

HBM

Interposer

XPUHBM HBM

Side View Top View



TeraByte Interconnection and Package LaboratoryTERA
TeraByte Interconnection and Package Laboratory

Detailed Structure of Soft-Actor Critic Based Multiple HBM-XPU 
Floorplanning Algorithm
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< Overview of Soft-Actor Critic Based Multiple HBM-XPU Floor-planning Algorithm >
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Markov Decision Process [1/3]: State
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< Information of Input State >
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Markov Decision Process [2/3]: Action
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▪ The placement action is an upper-left position and rotation of placement.

▪ Action mask is generated considering HBM/XPU area, boundary condition, and 

intersection area.

< Placement Action and Action Mask Generation >

+ +
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Markov Decision Process [3/3]: Reward
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Eye Diagram Reward Thermal Reward Path Quality

• Eye diagram reward is used as a signal integrity performance metric.

• Thermal reward is used as a function of maximum temperature of HBM-XPU structure, 

which is inversely proportional to the distance between HBM and XPU.

• Difference between theoretical minimum path and actual path is used as a path quality 

reward.

< Reward: SI Performance, TI Performance, Path Quality >

Path Quality 
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)

Thermal Reward

= f(Max temperature of HBM-

XPU Structure)
Eye Diagram Reward

= (EH · EW)

EW

EH

Signal

Passivation Substrate

Ground

(Thermal coupling) ∝ 1/(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

Tx Port

Rx Port

Minimum Path

Real Path

XPUHBM

L



TeraByte Interconnection and Package LaboratoryTERA
TeraByte Interconnection and Package Laboratory

Performance Verification of Proposed Method
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• Reward is not increasing effectively, because of the wirelength constraints for calculating 

eye diagram reward.

• For both of the rewards, more sophisticated construction of reward is crucial.

Eye Diagram Reward

# of Episodes # of Episodes

Path Quality Reward

# of Episodes

<Results and Metrics of Multiple HBM-XPU Placement and Routing Optimization>
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Conclusion

Large Language 

Model
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• On HBM8, full-3D HBM-XPU architecture with stacked processor is required for higher 

bandwidth and computational power.

• In order to archive signal integrity and thermal integrity, optimization of floor-planning and 

routing on HBM-XPU structure is crucial, and we proposed the Reinforcement Learning(RL) 

based floor-planning optimization method.

▪ Edge-Aware Graph Attention Network and Soft-Actor Critic is used in RL-Based Multiple 

HBM-XPU floor-planning agent.

▪ Eye diagram reward is used as a signal integrity performance metric.

• Thermal reward is used as a function of maximum temperature of HBM-XPU structure, 

which is inversely proportional to the distance between HBM and XPU.

▪ While extending to full-3D architecture, thermal issues can be a more critical issue, and 

signal characteristics vary significantly by layer, which can lead to the requirement of 

thermal-signal integrity co-optimization.
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Thank You!
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HBM7: I/O Interface Optimization for PSIJ Reduction in HBM-HBF 
Structure

35

4

< SSN Increase at HBM-HBF Structure >

▪ HBM-HBF structure incorporates additional I/O ports, which results in increased

simultaneous switching noise (SSN).

➢ As SSN increases, power supply induced jitter (PSIJ) also increases, which

significantly impairs signal integrity.

▪ The increased data rate of HBM7 (16 Gbps) requires a tighter jitter margin, which

amplifies the impact of PSIJ.

GPU

PHY PHY PHY PHY

HBM HBF

P/G Path Noise 

at HBF PDN

P/G Path Noise 

at HBM PDN

Increased
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Reinforcement Learning based Method for PSIJ-aware Design 
Optimization

▪ Choosing Adequate design parameters (PDN, I/O Driver, Interposer Channel) plays 

an important role in improving PSIJ.

➢ However, performing simulation for all the parameter requires large 

computing cost, as simulation goes through both HFSS and ADS model.

▪ By using reinforcement learning, optimal design parameters can be achieved 

without consuming too much time and computing power.
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< PSIJ-aware Design Optimization Problem of HBM4 Base Die >

PSIJ Result
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Limitations of Hardware Design by Conventional Reinforcement 
Learning (RL)

▪ Reinforcement Learning (RL) method has been in the spotlight for various hard-to-

solve hardware design optimization problems.

➢ However, lack of interpretability in RL result and inflexible RL reward causes 

severe inefficiency and waste of resource in RL debugging.

➢ As hardware designs utilizing AI become increasingly complex and resource-

intensive, intimate human-RL interaction has become necessary for efficient 

and convenient RL sessions.
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< Conventional Reinforcement Learning Architecture:

Lacking Interaction Between Model and Human >
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Interactive Reinforcement Learning (IRL): Large Language Model 
(LLM)-aided RL

▪ Interactive Reinforcement Learning (IRL) introduces Large Language Model (LLM) to 

hardware design as bridge between human and RL.

➢ RL-Modification: Human prompt is interpreted by LLM and is implemented to RL.

➢ Human-Friendly Interface: RL results are analyzed and explained to human by 

LLM to human language interface.

▪ LLM can modify RL factors such as learning rates, exploration rate, and action 

constraints, and reward function itself.
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< Interactive Reinforcement Learning System Outline: Human and RL Linked by LLM >

State ActionPolicy

Environment

Reward

Reinforcement Learning
Large Language 

Model
Human Interface

Human Feedback

(Natural Language)
RL Modification

✓ Learning rate

✓ Exploration Rate

✓ Constraint

✓ Reward Function

Optimized

Parameters
Explanations based 

on Context



TeraByte Interconnection and Package LaboratoryTERA
TeraByte Interconnection and Package Laboratory

Proposal of LLM-aided IRL-based HBM Design Agent for PSIJ 
Reduction
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< LLM-aided IRL-based HBM Design Agent for PSIJ Reduction >
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Markov Decision Process (MDP) Formulation
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< LLM-aided IRL-based HBM Design Agent with MoE Transformer for PSIJ Reduction >

Input Output

Environment

PSIJ Calculation

𝑆𝑁

✓ HBM Configuration

✓ Current Spectrum
✓ Optimal Tx 

Design

Reward: PSIJ
StateAction

① # of Decap + Placement

② # of I/O Driver Stage 

Change

③ Channel Parameter 

Modification
Agent: MoE Transformer

EncoderDecoder

① PDN

② I/O Driver

③ Channel



TeraByte Interconnection and Package LaboratoryTERA
TeraByte Interconnection and Package Laboratory

LLM-assisted RL Optimization: Faster RL Convergence
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0

< Comparison between Conventional RL and LLM-assisted RL >

▪ Unlike traditional RL architectures, LLM acts as an intermediary between humans

and the RL agent, enabling real-time monitoring and improvement of the model.

➢ LLM periodically adjusts the hyperparameters and reward function, enabling

RL agent to converge more quickly while avoiding local minima.

< Conventional > < LLM-assisted >
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LLM-based Reward Function Generation
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1

< LLM-Human Feedback: Reward Function Shaping >

▪ The reward function in RL can be easily modified through the natural language

processing capabilities of the LLM.

➢ Specifically, adjusting the reward function’s coefficients allows influence on the

priority of factors in RL agent.
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MoE Transformer Agent: High Sparsity, Fast Inference
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< Mixture of Experts (MoE) Transformer-based Policy Network >
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Switch Routing:

Only 1 Expert is Chosen

▪ Mixture of Experts (MoE) Transformer model is utilized for the policy network.

➢ 1 expert is chosen via routing layer: routing probability is calculated by softmaxing

weighted attention values.

▪ MoE Transformers improve computational sparsity by activating only a single expert, 

which leads to more efficient and faster inference.

𝑝𝑖(𝑥)

* Routing Probability: 𝑝𝑖 𝑥 =
𝑒𝑊𝑟∗𝑥𝑖

σ𝑗
𝑁 𝑒𝑊𝑟∗𝑥𝑖

× 𝑛

Less Calculation, Fast Inference
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Thank You!
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Conventional Reinforcement Learning-based HBM Design
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< Conventional Reinforcement Learning-based HBM Design: Black box problem>
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• Recent approaches have applied reinforcement learning (RL) to HBM design due to the 

complexity of the design space.

• However, conventional RL agents operate as black boxes, lacking explainability, 

transparency, and human interaction.

• This limits their usability in iterative, human-in-the-loop engineering workflows.

Designer

✓ No explainability

✓ No debugging

ViasBallmap

ChannelPDN

DecapsRouting

Circuit
Floor

Planning



TERA
TeraByte  Interconnection and Package Laboratory

TeraByte Interconnection and Package Laboratory

Interactive Reinforcement Learning-based HBM Design
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Eye diagram Thermal map
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Designer

• To overcome the limitations of conventional RL, an LLM-based interactive reinforcement 

learning (IRL) agent is proposed for HBM design.

• The IRL agent enables human designers to interact with the learning process, receive 

interpretable feedback, and iteratively refine design outcomes.

• This fosters a collaborative, explainable, and adaptive design workflow.
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< Interactive Reinforcement Learning(IRL)-based HBM Design >
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LLM-based HBM Design Agent using Interactive Reinforcement 
Learning
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1. Design HBM 

2. Explain Optimized HBM design

3. Feedback User’s preference/review to IRL Agent 

< LLM-based HBM Design Agent using Interactive Reinforcement Learning >
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Q: Why did you place decap 5 at there?

A: The placement of decap 5 at location (6, 14, 0) is 

expected to have a substantial impact on reducing 

self-impedance for Port 4

Q: What if decap 3 was placed at (6,10,0) instead?

A: Better for Transfer Impedance of Port 3 (+1.80), 

worse for Self Impedance of Port 2 (-28.38).

Answer was generated by Llama 3.1:8B

Explanation using LLM-based Explanation Generator 
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Silicon Interposer (z=0) < Sideview of HBM and GPU system >

< Decap assignment result by IRL agent >
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Demo: Interaction with LLM-based HBM Design AI Agent
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< Demo: Interaction with LLM-based HBM Design AI Agent >
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Future: LLM-based Interactive Design Optimization Agent
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< LLM-based Interactive Design Optimization Agent >
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Thank you
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