AIONET Testnet — Live Observation
BEMBH-8192 (8192-Bit Memory-Bound Hash)

Sam Nguyen-Sop
aionetprotocol@gmail.com

December 15, 2025

Abstract

This document presents a live-observation report for the AIONET Testnet focusing on
BEMBH-8192, an 8192-bit memory-bound hash format used within AIONET’s validation loop.
The primary evidence artifact is a continuous on-screen recording of multi-node operation
generating and logging 8192-bit batch hashes while maintaining stable runtime behavior under
sustained execution. We clarify what BEMBH-8192 represents, what it does not represent (e.g.,
arbitrary string generation), and why live observation is a necessary methodology for validating
continuity, stability, and honest execution beyond static benchmarks. This report also provides
a minimal legacy reference to compute-bound hashing (e.g., SHA families) strictly for scope
comparison.

1 Scope and Positioning

This document is a live observation report for an AIONET Testnet run using BEMBH-8192. It is
not a full protocol specification, tokenomics paper, or formal security proof. The objectives are:

e Establish what BEMBH-8192 is in AIONET and the constraints that give it meaning.
e Provide evidence methodology centered on continuous live observation (recorded execution).
e Report observed runtime stability and operational characteristics of the testnet run.

e Clarify legacy hash context (e.g., SHA-256/512) without positioning BEMBH-8192 as a
replacement for those primitives.

2 Definition: BEMBH-8192

2.1 Terminology

BEMBH-8192 stands for 8192-Bit Memory-Bound Hash. In the AIONET Testnet context,
BEMBH-8192 is a fixed-width 8192-bit hash output used as a high-resolution batch commitment
over structured runtime state and transaction-related inputs produced during live execution.

2.2 Operational Meaning

The meaning of an 8192-bit hash output is not derived from its length alone. Its meaning arises
from:



e Deterministic construction: a defined input schema and procedure.

e Execution context: generation occurs inside a live validator workflow rather than offline
string creation.

e Auditability: the output is emitted in a log format (e.g., JSONL) with associated metadata
(e.g., height, timing).

e Continuity: repeated generation over time enables observation of stability and behavior
under sustained operation.

3 What BEMBH-8192 Is Not

Because wide hashes can be misunderstood as “just big numbers,” we explicitly state what is not
being claimed:

e Not a claim that “bigger bits automatically means better security” without a threat model.
e Not a random 8192-bit string generator with no structured input meaning.
e Not a benchmark contest for maximum hash throughput.

e Not a GPU-mining primitive or proof-of-work replacement.

4 Legacy Hash Context (SHA Families)

SHA-256 and SHA-512 are widely used cryptographic hash functions designed for strong preimage
and collision resistance under a compute-bound model. This report references SHA families only to
highlight scope differences:

e Compute-bound emphasis (legacy): optimization typically focuses on throughput and
resistance properties.

e Live validation emphasis (AIONET context): focuses on continuity, stability, and the
ability to anchor high-resolution state commitments during ongoing execution.

BEMBH-8192 is presented as a memory-bound, execution-contextual hashing format used inside
ATONET testnet validation, rather than a general-purpose replacement for SHA primitives.

5 Why Live Observation (Recorded Execution) Matters

Static benchmarks, screenshots, or offline logs can be insufficient to establish certain properties.
Live observation is used to support:

e Continuity: demonstrating sustained operation across time.

Stability: observing that the system does not degrade or require manual recovery at termina-
tion.

Honest execution: reducing the possibility of replayed logs or synthetic “demo” outputs.

Operational realism: capturing real-time generation, logging, and node interactions.



5.1 Recording Compression Note

For distribution and review, the live recording may be time-compressed (constant speed fast-forward)
to reduce duration while preserving sequence integrity. Time compression does not change the
underlying runtime event order.

6 Testnet Configuration Summary

6.1 Nodes and Roles

This testnet run consists of a coordinator and multiple nodes (including normal and adversar-
ial/spoofing roles). The purpose is to validate multi-node operation under a realistic topology.

Component  Role Notes

Coordinator ~Aggregation / orchestration  Accepts node messages, logs outputs
Node(s) Normal validator simulation = Generates transactions / state updates
Node(s) Spoof/adversarial simulation Used to test detection/robustness paths

Table 1: High-level testnet role summary (fill exact counts/IDs as needed).

6.2 Hash Output Artifact

Each block-height (or step) emits a record containing an 8192-bit hash in hexadecimal representation.
Example fields may include:

e block_height
e finality ms

e batch_8192 hex

Note: This report intentionally avoids embedding large raw hash blobs in the main text. Full
artifacts should be provided as attached logs or external references.

7 Observation Log and Evidence Artifacts

7.1 Primary Evidence

The primary evidence artifact is a continuous on-screen recording of the testnet run showing:
e active generation of BEMBH-8192 outputs,
e live runtime metrics (where visible),
e ongoing log growth (e.g., JSONL),

e termination without manual recovery, if applicable.



7.2 Secondary Evidence

Secondary evidence artifacts may include:
e JSONL output logs,
e screenshots of sample hash lines,

e host metrics snapshots (CPU/RAM/GPU).
8 Results (To Be Filled with Run-Specific Numbers)
This section is a structured placeholder for inserting your actual measurements from the run.

8.1 Runtime Stability

e Total runtime observed:

e Manual recovery needed at termination: (Yes/No)

e Coordinator responsiveness maintained: (Yes/No)

8.2 Performance Indicators

e Peak CPU utilization observed (approx.):

e Typical CPU utilization band (approx.):

e RAM utilization observed (approx.):

e GPU utilization observed (approx.):

8.3 Finality Timing

e Median finality ms:

e Typical range:

9 Interpretation: Why 8192 Bits Here
Within this testnet scope, the use of 8192-bit batch hashes supports:

e High-resolution commitments: larger fixed-width outputs provide a wide commitment
space for structured batch state.

e Future transcription layers: enabling an interface model where raw data inputs can be
deterministically mapped to interpretable outputs (“Raw In” — “Transcribed Out”).

e Lower collision concern in practice: wide commitments reduce accidental collision
likelihood in the batch commitment layer, assuming a sound construction.



10 Planned Next Step: Raw-to-Meaning Transcription Ul
A near-term objective is to demonstrate an interface pattern:

e Left panel: raw batch inputs or raw hash-anchored records (e.g., 20 entries),

e Right panel: deterministic transcription outputs (e.g., 20 interpreted summaries),

enabling reviewers to validate that BEMBH-8192 outputs are the result of structured runtime state

rather than arbitrary strings.

11 Limitations

This report does not claim:
e a complete cryptographic security proof of the construction,
e a formal adversarial model covering all classes of attacks,

e performance generalization to all hardware and workloads.

12 Conclusion

This live observation report documents a sustained AIONET Testnet run generating BEMBH-8192
outputs as part of a memory-bound validation workflow. The recording-based methodology is used
to establish continuity and honest execution characteristics that static benchmarks cannot capture.
Future work will focus on publishing deterministic raw-to-meaning transcription methods and
expanding formal definitions and threat modeling around memory-bound hashing within AIONET.

Artifacts: (add links/filenames here)

e Live recording:

e JSONL logs:

e Screenshots:




	Scope and Positioning
	Definition: BEMBH-8192
	Terminology
	Operational Meaning

	What BEMBH-8192 Is Not
	Legacy Hash Context (SHA Families)
	Why Live Observation (Recorded Execution) Matters
	Recording Compression Note

	Testnet Configuration Summary
	Nodes and Roles
	Hash Output Artifact

	Observation Log and Evidence Artifacts
	Primary Evidence
	Secondary Evidence

	Results (To Be Filled with Run-Specific Numbers)
	Runtime Stability
	Performance Indicators
	Finality Timing

	Interpretation: Why 8192 Bits Here
	Planned Next Step: Raw-to-Meaning Transcription UI
	Limitations
	Conclusion

