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Abstract

This document presents a live-observation report for the AIONET Testnet focusing on
BEMBH-8192, an 8192-bit memory-bound hash format used within AIONET’s validation loop.
The primary evidence artifact is a continuous on-screen recording of multi-node operation
generating and logging 8192-bit batch hashes while maintaining stable runtime behavior under
sustained execution. We clarify what BEMBH-8192 represents, what it does not represent (e.g.,
arbitrary string generation), and why live observation is a necessary methodology for validating
continuity, stability, and honest execution beyond static benchmarks. This report also provides
a minimal legacy reference to compute-bound hashing (e.g., SHA families) strictly for scope
comparison.

1 Scope and Positioning

This document is a live observation report for an AIONET Testnet run using BEMBH-8192. It is
not a full protocol specification, tokenomics paper, or formal security proof. The objectives are:

e Establish what BEMBH-8192 is in AIONET and the constraints that give it meaning.
e Provide evidence methodology centered on continuous live observation (recorded execution).
e Report observed runtime stability and operational characteristics of the testnet run.

e Clarify legacy hash context (e.g., SHA-256/512) without positioning BEMBH-8192 as a
replacement for those primitives.

2 Definition: BEMBH-8192

2.1 Terminology

BEMBH-8192 stands for 8192-Bit Memory-Bound Hash. In the AIONET Testnet context,
BEMBH-8192 is a fixed-width 8192-bit hash output used as a high-resolution batch commitment
over structured runtime state and transaction-related inputs produced during live execution.

2.2 Operational Meaning

The meaning of an 8192-bit hash output is not derived from its length alone. Its meaning arises
from:



e Deterministic construction: a defined input schema and procedure.

e Execution context: generation occurs inside a live validator workflow rather than offline
string creation.

e Auditability: the output is emitted in a log format (e.g., JSONL) with associated metadata
(e.g., height, timing).

e Continuity: repeated generation over time enables observation of stability and behavior
under sustained operation.

3 What BEMBH-8192 Is Not

Because wide hashes can be misunderstood as “just big numbers,” we explicitly state what is not
being claimed:

e Not a claim that “bigger bits automatically means better security” without a threat model.
e Not a random 8192-bit string generator with no structured input meaning.
e Not a benchmark contest for maximum hash throughput.

e Not a GPU-mining primitive or proof-of-work replacement.

4 Legacy Hash Context (SHA Families)

SHA-256 and SHA-512 are widely used cryptographic hash functions designed for strong preimage
and collision resistance under a compute-bound model. This report references SHA families only to
highlight scope differences:

e Compute-bound emphasis (legacy): optimization typically focuses on throughput and
resistance properties.

e Live validation emphasis (AIONET context): focuses on continuity, stability, and the
ability to anchor high-resolution state commitments during ongoing execution.

BEMBH-8192 is presented as a memory-bound, execution-contextual hashing format used inside
ATONET testnet validation, rather than a general-purpose replacement for SHA primitives.

5 Why Live Observation (Recorded Execution) Matters

Static benchmarks, screenshots, or offline logs can be insufficient to establish certain properties.
Live observation is used to support:

e Continuity: demonstrating sustained operation across time.

Stability: observing that the system does not degrade or require manual recovery at termina-
tion.

Honest execution: reducing the possibility of replayed logs or synthetic “demo” outputs.

Operational realism: capturing real-time generation, logging, and node interactions.



5.1 Recording Compression Note

For distribution and review, the live recording may be time-compressed (constant speed fast-forward)
to reduce duration while preserving sequence integrity. Time compression does not change the
underlying runtime event order.

6 Testnet Configuration Summary

6.1 Nodes and Roles

This testnet run consists of a coordinator and multiple nodes (including normal and adversar-
ial/spoofing roles). The purpose is to validate multi-node operation under a realistic topology.

Component  Role Notes

Coordinator ~Aggregation / orchestration  Accepts node messages, logs outputs
Node(s) Normal validator simulation = Generates transactions / state updates
Node(s) Spoof/adversarial simulation Used to test detection/robustness paths

Table 1: High-level testnet role summary (fill exact counts/IDs as needed).

6.2 Hash Output Artifact

Each block-height (or step) emits a record containing an 8192-bit hash in hexadecimal representation.
Example fields may include:

e block_height
e finality ms

e batch_8192 hex

Note: This report intentionally avoids embedding large raw hash blobs in the main text. Full
artifacts should be provided as attached logs or external references.

7 Observation Log and Evidence Artifacts

7.1 Primary Evidence

The primary evidence artifact is a continuous on-screen recording of the testnet run showing:
e active generation of BEMBH-8192 outputs,
e live runtime metrics (where visible),
e ongoing log growth (e.g., JSONL),

e termination without manual recovery, if applicable.



7.2 Secondary Evidence

Secondary evidence artifacts may include:
e JSONL output logs,
e screenshots of sample hash lines,

e host metrics snapshots (CPU/RAM/GPU).
8 Results (To Be Filled with Run-Specific Numbers)
This section is a structured placeholder for inserting your actual measurements from the run.

8.1 Runtime Stability

e Total runtime observed:

e Manual recovery needed at termination: (Yes/No)

e Coordinator responsiveness maintained: (Yes/No)

8.2 Performance Indicators

e Peak CPU utilization observed (approx.):

e Typical CPU utilization band (approx.):

e RAM utilization observed (approx.):

e GPU utilization observed (approx.):

8.3 Finality Timing

e Median finality ms:

e Typical range:

9 Interpretation: Why 8192 Bits Here
Within this testnet scope, the use of 8192-bit batch hashes supports:

e High-resolution commitments: larger fixed-width outputs provide a wide commitment
space for structured batch state.

e Future transcription layers: enabling an interface model where raw data inputs can be
deterministically mapped to interpretable outputs (“Raw In” — “Transcribed Out”).

e Lower collision concern in practice: wide commitments reduce accidental collision
likelihood in the batch commitment layer, assuming a sound construction.



10 Planned Next Step: Raw-to-Meaning Transcription Ul
A near-term objective is to demonstrate an interface pattern:

e Left panel: raw batch inputs or raw hash-anchored records (e.g., 20 entries),

e Right panel: deterministic transcription outputs (e.g., 20 interpreted summaries),

enabling reviewers to validate that BEMBH-8192 outputs are the result of structured runtime state

rather than arbitrary strings.

11 Limitations

This report does not claim:
e a complete cryptographic security proof of the construction,
e a formal adversarial model covering all classes of attacks,

e performance generalization to all hardware and workloads.

12 Conclusion

This live observation report documents a sustained AIONET Testnet run generating BEMBH-8192
outputs as part of a memory-bound validation workflow. The recording-based methodology is used
to establish continuity and honest execution characteristics that static benchmarks cannot capture.
Future work will focus on publishing deterministic raw-to-meaning transcription methods and
expanding formal definitions and threat modeling around memory-bound hashing within AIONET.

Artifacts: (add links/filenames here)

e Live recording:

e JSONL logs:

e Screenshots:
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